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Abstract. Deontic logic is a logic often used to formalise scenarios in the
legal domain. Within the legal domain there are many exceptions and
conflicting obligations. This motivates the enrichment of deontic logic
with a notion of typicality which is based on defeasibility, with defeasi-
bility allowing for reasoning about exceptions. Propositional Typicality
Logic (PTL) is a logic that employs typicality. Deontic paradoxes are
often used to examine logic systems as they provide undesirable results
even if the scenarios seem intuitive. Forrester’s paradox is one of the most
famous of these paradoxes. This paper shows that PTL can be used to
represent and reason with Forrester’s paradox in such a way as to block
undesirable conclusions without sacrificing desirable deontic properties.

1 Introduction

Logic has for a long time been used to formalise legal norms and study legal rea-
soning [5]. The difference between what is the case and what should be the case
is fundamental to law and this naturally translates to deontic logic and its no-
tions of obligation, permission and prohibition. This paper is part of a research
study which focuses on introducing the notion of defeasibility into a deontic
setting. Defeasibility allows for reasoning about exceptions in a domain, distin-
guishing between what is normally the case and what is actually the case. It is
important to note there are already notions of defeasibility in the world of legal
reasoning. The introduction of new information or a new regulation can cause
laws to conflict and/or present exceptions which make existing laws inapplicable
[5]. Therefore the combination of these notions is worth exploring, Typicality
is based on defeasibility and is a notion used in Propositional Typicality Logic
(PTL) where its extra expressivity makes it a more powerful version of defeasi-
bility [1]. In deontic logic research, it is common for systems to be validated with
the use of deontic paradoxes [18]. One of the more famous of these paradoxes
is Forrester’s paradox also known as the Gentle Murder paradox [15, 18]. The
semantic connection between deontic logic and the logic systems of defeasibility
and typicality will be discussed later in the paper. This paper will present the
paradox and also examine the effectiveness of PTL when applied to the paradox.

Now we outline the structure of the paper. Firstly we present propositional
logic as this is the logic that forms the foundation of the two logic systems
will be working with. We then detail these two logic systems, deontic logic and
propositional typicality logic. The deontic logic section will be where Forrester’s
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paradox and its issues is detailed. Once these have been detailed we then look
at the analysis of Forrester’s paradox. Finally, we present the conclusions.

2 Propositional Logic

Propositional logic is a logic used to formalise statements that can either be
true or false [7]. These statements are usually represented using propositional
letters such as p,q and r. Given a set of propositional letters Φ, the language of
propositional logic can be represented with the following constants and operators
[7, 14, 15]. ⊥ is a constant which represents a contradiction, ¬ and ∧ are operators
which represents negation and conjunction respectively. The generation of ∨,→,
↔ and > can be done in the usual way using the other parts of the language
[14, 15]. Since the reasoning aspect is of interest to us it is important to mention
the notion of entailment. Entailment refers to what conclusions logically follow
from a set of premises and will be presented more formally in a later section [1].

3 KLM-style defeasible reasoning

We now briefly present a logic system which is a form of defeasible reasoning,
which allows for conclusions to be retracted and therefore allows for dealing
with exceptions. The logic often referred to as KLM approach is an enriched
version of propositional logic with defeasible implications of the form α |∼ β [2,
3, 8]. Defeasible implications will then represent implications that we can reject
in exceptional circumstances and are read as “α typically/usually implies β”.
Defeasible entailment, |≈ α |∼ β, means that all the minimal valuations that
satisfy α also satisfy β [3, 8]. Minimal valuations will be detailed formally in the
following section.

4 Deontic Logic

This section will formally present deontic logic and the specific logic system we
will investigate. Deontic Logic is a field of logic which formalises normative con-
cepts. These concepts include obligation (“what is an individual’s duty”, “what
an individual ought to do”), permission (“what an individual may do”) as well as
other related concepts such as prohibition (“what an individual is forbidden from
doing”) [6, 13, 15]. The system we will be working with is the traditional Dyadic
Standard Deontic Logic (DSDL) approach [12, 14, 15] although there are alter-
native approaches to deontic logic such as input/output logic [6, 9]. The reason
we opted for the more traditional approach was that it has semantics based on
valuations, similar to that of the other logic systems we deal with in the research
study [12, 15].

4.1 Language

Given a set of propositional letters Φ, the language of Dyadic Standard Deon-
tic Logic (DSDL) can be represented with the following operator added to the
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propositional logic language [14, 15]: the ©-operator is added which represents
obligation. This operator in DSDL better handles conditional obligations such as
“if p is true then you must do q”. Such statements can be represented using the
“|” notation which is usually seen in conditional probability. The above example
would be translated to ©(q | p) in DSDL. Since many legal statements are of
the conditional form, the conventional DSDL will be the logic used when we
are dealing in the deontic environment instead of Standard Deontic Logic (SDL)
which does not have the “ |” mechanism for conditional obligations. The notion of
permission is related to obligation by Pp = ¬©¬p and that of prohibition being
similarly related by Fp =©¬p. Pp is to be read as “p is permitted” while Fp can
be read as “p is prohibited/forbidden” [14, 15]. Obligations without a conditional
can be written in the conditional form in the following manner ©p = ©(p| >)
[15].

4.2 Semantics

We can now formally define the preference-based semantics for DSDL as similarly
presented by Parent et al. [14] and Pigozzi et al. [15]. We have preference models
defined as M = (V,≤) where V ⊆W , with W being a non-empty set of possible
valuations. Possible valuations for a knowledge base containing the propositional
letters p and q are {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}, where {p,¬q} is a valu-
ation where p is true and q is false. Note that we will not allow for duplicate
valuations. ≤ is not only a binary relation over V but a total preorder as it is
reflexive, transitive and connected. The operator |= represents the satisfaction
of a formula. Given a model M and an s ∈ V we can define the satisfaction of
formulas in the language, M, s |= p as follows [14]:

– M, s |= p iff p is true in the valuation s
– M, s |= ¬p iff not M, s |= p, as in p is false in s
– M, s |= p ∧ q iff M, s |= p and M, s |= q, as in p and q are both true in s
– M, s |= ©(q | p) iff ∀s′, if s′ ∈ {s ∈‖ p ‖: s ≤ t,∀t ∈‖ p ‖}, then M, s′ |= q.

Here ‖ p ‖ = {s ∈ W : M ,s |= p} and s < s′ means that s ≤ s′ and s′ �
s. So ©(q | p) means that given p being true, then only if the “minimal” or
“most typical” valuations that satisfy p also satisfy q can we then can derive
that q is obligatory

4.3 Properties

The following is an outline of some of the desirable deontic properties that com-
monly occur in deontic logic literature [4, 12, 15, 18]. These properties were cho-
sen because they were presented as being important or at least relevant when
assessing the usefulness of deontic logic systems. Thus they should be seen as
properties that an ideal system of deontic logic would have. Note, this is not a
full list of properties that can seem desirable for a deontic logic nor are they
necessary properties for a reasonable deontic system. These are simply those
needed for the analysis of Forrester’s paradox in the paper..
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Ought Implies Can ¬© (α ∧ ¬α)

This property could also be represented as ¬©⊥ as the conjunction of conflicting
tasks, α ∧ ¬α, will be a logical contradiction and can therefore be represented
by ⊥. The property states that it is undesirable for contradictory tasks such
as α and ¬α to be obligatory. Without “ought implies can”, the derivation of a
contradiction, e.g ©⊥, would be acceptable and simply indicate that there has
been a violation.

Factual Detachment If we have ©(β | α) and α then we can derive ©β

If we have an obligation to do a task β when α is satisfied, once we have that α
has happened then it is intuitive that we are now obligated to do β.

Restricted Strengthening of the Antecedant If we have ©(β | α) then we
can derive ©(β | γ ∧ α) if γ is true

Let’s say we have the obligation to do β when α is true. It is intuitive that a
more specific version of α being true would still make β obligatory. Note that this
restricted version of the property requires α ∧ γ to be consistent. The property
will also be referred to as RSA during this paper.

Conjunction If we have ©(β | α) and ©(γ | α) then we can derive
©(γ ∧ β | α)

Let’s say we have an obligation to do a task β when α is satisfied. And we
also have an obligation to do γ when α is satisfied. By combining these two
obligations, it is intuitive that we are now obligated to do both β and γ when
we have α. We will be working with a restricted version of this property where
we will require that β ∧ γ be consistent.

Weakening If we have ©(β ∧ γ | α) then we can derive ©(β | α)

Let’s say that we have the obligation to do both γ and β when α is true. It is
intuitive that we can derive an obligation to do only one of γ or β when α is
satisfied. So Weakening can be applied in this scenario since we know β∧γ → β.

4.4 Forrester’s paradox

Forrester’s paradox is one of the most frequently occurring paradoxes in the
deontic logic literature [12, 15, 18]. One of the reasons that this paradox was
chosen is that it is similar in structure to many other deontic examples as it
is a contrary-to-duty scenario [18]. For obligations ©(α1 | β1) and ©(α2 | β2)
we say that the second obligation is a contrary-to-duty obligation of the first if
its antecedant β2 is contradictory to the consequent of the first α1. Intuitively,
this means an obligation that informs us what must be the case when something
forbidden has been done [16]. Another reason we look at the paradox is that it
provides difficulties that the straightforward examples would not, as it has been
a challenge for deontic logic researchers [10, 12, 18].
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This paradox comprises three statements. “You must not kill anybody”, “If you
kill someone then you must kill them gently” and “You killed someone”. With this
we also have the background knowledge that “Killing gently implies killing” [12,
15, 18]. We will now detail two undesirable derivations that occur through the
different combinations of the deontic properties on this paradox’s set of state-
ments. Both are presented as they illustrate different issues with the paradox and
the properties. In the following figures, derivations of obligations are shown us-
ing an arrow with a subscript containing the abbreviation of the property which
was used for the derivation. ©(β | α)→W ©(γ | α) would mean the Weakening
property was used to go from ©(β | α) to ©(γ | α). Weakening would be the
applicable here if we have β → γ. For derivations that involve more than one
obligation as the premise, these obligations are displayed between braces and
separated by a comma. {©(γ | α),©(β | α)} →Conj ©(γ ∧ β | α) means that
the Conjunction property was used on the obligations ©(γ | α) and ©(β | α)
to derive ©(γ ∧ β | α). The paradox’s statements can be represented by the
following deontic knowledge base: {©¬k,©(g | k), k}

RSA, Weakening and Conjunction

1. ©¬k →W ©¬g
2. ©¬g →RSA ©(¬g | k)
3. {©(¬g | k),©(g | k)} →Conj ©(¬g ∧ g | k)

The background knowledge is represented by g → k. When we apply Weakening
to the first obligation “You must not kill anybody”, we can then derive “You
must not kill gently” since we have that “Killing gently implies killing” and the
contrapositive that “Not killing implies not killing gently”. This is an intuitive
derivation since killing gently is still killing, which we want to be forbidden. Then
using RSA and the fact that “You killed someone”, we can go from “You must
not kill gently” to “If you kill then you must not kill gently”. This derivation is
the issue with the paradox with an obligation becoming the premise from which
its own contrary-to-duty obligation is derived which is counter-intuitive [12, 15].
Then using Conjunction we can derive a contradiction from the obligations “If
you kill then you must not kill gently” and “If you kill then you must kill gently”.
If we have the aforementioned “ought implies can” property then this would be
undesirable [12, 15, 18]. Without it, we would be satisfies with the derivation of a
violation but “ought implies can” states we don’t want to settle for a contradiction
but rather to act as best as possible in the case of a violation [18].

Factual Detachment and Conjunction

1. {©(g | k), k} →FD ©g
2. {©¬k, ©g} →Conj ©(¬k ∧ g)

The rule of Factual Detachment gives us “You should kill gently” from the fact
“You have killed” and the obligation “If you kill then you should kill gently”.
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Applying Conjunction to “You should kill gently” and the non-conditional obli-
gation “You ought to not kill someone” gives us “You should not kill and you
should kill gently” which is an undesirable derivation if one was to use the “ought
implies can” principle [12, 15]. And as in the previous derivation, if we do not
have “ought implies can” then the derivation is not problem.

5 Propositional Typicality Logic

5.1 Language

Given a set of propositional letters Φ, the language of the propositional typicality
logic, denoted by L•, can be represented with the following •-operator added to
the propositional logic language [1]: There is •α with its intuition being that
it represents the most typical situations where α holds. Note that this means
that PTL is more expressive than KLM-style logic [1] from section 3 and the
bullet operator can be applied to both the antecedant and consequent side of
a conditional. The following example illustrates how it can be used. •α → •¬β
stands for “the most typical situations where α holds, imply the most typical
situations where β does not hold”. Note, this is a similar reading to the semantics
to that of DSDL conditionals as stated in section 4.2.

5.2 Semantics

For the semantics of PTL, it is done using ranked interpretations. WithW being
the set of possible valuations, ranked interpretations are pairs < V,≤>, where
V ⊆W and ≤ is a total preorder over V . Intuitively, the valuations pushed lower
down the rankings are more typical than those that are higher [1]. And given a
ranked interpretation R and a formula α, the set of valuations that satisfy α are
represented as JαKR [1]. Satisfaction of a formula is done in the classical way,
such as in section 4.2, with the omission of the ©-operator satisfaction and the
addition of the following [1]: v |= •α iff v |= α and there is not a v′ ≤ v such
that v′ |= α. So the valuations that satisfy •α will be the minimal valuations
that satisfy α. So J•αKR := min≤(JαKR) for a ranked interpretation R.

Note that the typicality •-operator can express any KLM-style conditionals.
That is, for every ranked interpretation R and every α, β ∈ L, R � α |∼ β
if and only if R � •α → β. There are L•-sentences that cannot be expressed
using KLM-style |∼-statements on L, so the converse does not hold.[1]. Now
the method of entailment we will use, which is proposed by Booth et al. [1], is
outlined.

5.3 LM-entailment

The first form of entailment to be looked at is one that produces a single ranked
model that is constructed to be the LM-minimum model for the knowledge base.
A sequence of ranked interpretations (R0,R1,R2,...) constructed during the al-
gorithm will be used to construct R∗KB, which will be used for entailment. The
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algorithm will make use of ranks in order to construct R∗KB. The ranks represent
a level in the ranked interpretation, where the rank of a valuation u is less than
the rank of v if and only if u < v, as defined in section 5.2 [1].

The following is some of the notation used during the algorithm. In this al-
gorithm, we say R1

S is the ranked interpretation obtained when any valuation
not in S, where S ⊆ V R, has its rank increased by 1. Similarly, R∞S is the ranked
interpretation obtained from R by setting the rank of all valuations not in S to
∞ [1]. These would represent those at the highest level of R∗KB and deemed to
be atypical. Now to present the steps in the algorithm [1].

Step 1 Set the ranks of all valuations in the knowledge base to 0, define S0

which is initially empty and have variable i equal to 1.
Step 2 Find the valuations which satisfy the knowledge base with respect to
the current ranked interpretation R0 and put them into the set Si.
Step 3 If Si is equal to Si−1 then there hasn’t been a change so set the rank of
all the valuations that do not satisfy the knowledge base with respect to Ri to
∞ and return the interpretation that remains.
Step 4 Otherwise create a new ranked interpretation Ri, by increasing the rank
of every valuation not in Si by 1.
Step 5 Find the valuations which satisfy the knowledge base with respect to
the current ranked interpretation Ri and put them in the set Si+1 and finally,
increment i.
Step 6 Go to Step 3.

Example Now to present an example that illustrates the above steps. Let’s
take the knowledge base, {•p → ¬f, •b → f, p → b}. The conditionals can be
read as “typical penguins do not fly”, “typical birds do fly” and “penguins are
birds”. Intuitively, the situations that are most reasonable given the information
we have would be the situations where there are no penguins while the most
typical birds do fly. Such a scenario would satisfy all the statements. It seems
reasonable that the next best situation is when the most typical penguins don’t
fly while we can have that non-typical birds also don’t fly. Then we can have
that non-typical penguins do fly. The least desirable situations are when we have
penguins that aren’t birds at all as this violates a classical conditional, p → b.
Now to look if the reasoning matches our intuition.

Firstly we note that because of the last statement we can immediately discount
the valuations {p,¬b, f} and {p,¬b,¬f} as having infinite rank, and therefore on
the highest level, as they will never satisfy the set of statements. So we begin by
setting the rank of all the valuations to 0. The valuations that satisfy all the state-
ments are {¬p, b, f}, {¬p,¬b, f} and {¬p,¬b,¬f}. Therefore they become the
first level of our model, S1 := JKBKR0 = {{¬p, b, f}, {¬p,¬b, f}, {¬p,¬b,¬f}}.
All the valuations not in S1 obtain a rank of 1. The valuations that satisfy
all the statements w.r.t. R! are {p, b,¬f} and {¬p, b,¬f}. So we have S2 :=
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JKBKR1 = {{p, b,¬f}, {¬p, b,¬f}}. The remaining valuation {p, b, f} will be S3

and {p,¬b, f} and {p,¬b,¬f} will be S4. As previously mentioned the valuations
in S4 will not satisfy the statements so S4 will remain the same as S5 and so on.
The algorithm terminates at this stage. The ranked models for the Bird exam-
ple generated during the execution of the LM-entailment algorithm are given in
figure 1.

R0
0. {¬p, b, f}, {¬p,¬b, f}, {¬p,¬b,¬f}, {p, b,¬f}

{¬p, b,¬f}, {p, b, f}, {p,¬b, f}, {p,¬b,¬f}

R1
1. {p, b,¬f}, {¬p, b,¬f}, {p, b, f}, {p,¬b, f}, {p,¬b,¬f}
0. {¬p, b, f}, {¬p,¬b, f}{¬p,¬b,¬f}

R2

2. {p, b, f}, {p,¬b, f}, {p,¬b,¬f}
1. {p, b,¬f}, {¬p, b,¬f}, {p, b, f}, {p,¬b, f}, {p,¬b,¬f}
0. {¬p, b, f}, {¬p,¬b, f}{¬p,¬b,¬f}

R∗KB

∞ {p,¬b, f}, {p,¬b,¬f}
2. {p, b, f}
1. {p, b,¬f}, {¬p, b,¬f}
0. {¬p, b, f}, {¬p,¬b, f}, {¬p,¬b,¬f}

Fig. 1. The ranked models for the Bird example generated during the execution of the
LM-entailment algorithm. R∗KB is then the final model and gives us the entailment.

6 PTL Analysis

6.1 Representation

It is important to note that we restrict ourselves to the use of only a subset of
PTL for this analysis. We will only allow PTL statements of the form, •α → β
or •α → •β, where α and β could be any combination of the PTL language
except •-operator. The reason being that the examples we deal with can be
represented reasonably with this limited language and this limiting also reduces
the complexity of the analysis. Statements of the form α→ •β do not have the
intuitive reading we desire. Since we do not want the properties of β, whether
they are the most typical or not, to apply to all α valuations. This is why we
require that the antecedant have a bullet operator. We can represent the state-
ments with the typicality bullet on antecedent side only where •α→ β reads as
“the most typical α are β”. As previously stated, bullets on the antecedant-side
only make the conditionals equivalent to the KLM-style conditionals and this
is examined in more detail in the greater research study. Thus we will use the
alternative representation to examine typicality and its added expressive power.
This is •α→ •β and can be read as “the most typical α are the most typical β”.
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Since Forrester’s paradox is a contrary-to-duty scenario, it would be reason-
able to introduce a contrary-to-duty example and observe if the translation is
sound. The obligations of the scenario are as follows: “You should not be late for
work” and “If you are late then you must apologise”. These can be translated to
{•> → •¬l, •l → •a}. The reading of the statements with bullets on both sides
seems reasonable. This reading specifies that the most typical situations where
one is late, •l, must be the most typical situations where one apologises, •a, as
opposed to any general apologising scenario. So bullets on both sides seem to
be reasonable for contrary-to-duty obligations and will be used to represent the
paradox.

6.2 Properties

We check whether our restricted PTL satisfies the aforementioned desirable prop-
erties using LM-entailment. In other words, we check if the properties can be
applied when we have obligations of the form similar to that of Forrester’s para-
dox. We are not assessing whether these are general properties that are satisfied
by PTL. Except for the “ought implies can” principle, we do the check for the
different representations of obligations that we have, which are cases which in-
volve non-conditional and conditional obligations. For each property, we present
the knowledge bases and their corresponding LM-entailment models.
Ought Implies Can and Violations Let’s say we have a knowledge base that
contains the conditionals •> → •α and •> → •¬α. There will be no valuations
that satisfy the knowledge base because of the conflicting conditionals, therefore
we cannot reason with this knowledge base. This implies that we have the “ought
implies can” property. Since having contradictory facts in the knowledge base
stops us from using the LM-entailment reasoning, we will not have any facts in
the knowledge base when using the LM-entailment algorithm. We will instead
use facts after the LM-entailment algorithm constructs the ranked model. We
will strip valuations from the model that contradict the facts we are presented
with and then reason with the resultant model. This will give the best case
scenario whenever an obligation has been violated.

Restricted Strengthening of the Antecedant We assume that we have
©(β | α) and then check if ©(β | γ ∧ α) can be derived.

1. We have {•> → •β}and ideally want to derive •α→ •β when α holds.

1 {α,¬β},{¬α,¬β}
0 {α,β},{¬α,β}

In the case where α holds then it is clear that the most typical α valuation is
also the most typical β valuation. This would be blocked if we had •¬α→ •β
or •α→ •¬β in the knowledge base.

2. We have {•α→ •β} and ideally want to derive •(α∧γ)→ •β when γ holds.

1 {α,¬β, γ},{α,¬β, ¬γ}
0 {α,β, γ},{α,β, ¬γ}, {¬α,β, γ}, {¬α,¬β, γ}, {¬α,¬β, ¬γ}, {¬α,β, ¬γ}
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In the case where γ holds then it is clear that the most typical α∧γ valuation
is also the most typical β valuation. This would be blocked if we had •¬(α∧
γ)→ •β in the knowledge base.

Weakening We assume that we have ©(β ∧ γ | α) and then check if ©(β | α)
can be derived.

1. We have {•> → •(β ∧ γ)} and ideally want to derive •> → •β.
1 {β,¬γ}, {¬β,γ} , {¬β,¬γ}
0 {β,γ}

It is clear that the most typical valuation is the most typical β valuation
which allows for the derivation of •> → •β. The most typical valuation in
the model is also the most typical γ valuation thus the derivation of •> → •γ
also holds.

2. We have {•α→ •(β ∧ γ)} and ideally want to derive •α→ •β.
1 {α,¬β, γ},{α,¬β, ¬γ}, {α,β, ¬γ}
0 {α,β, γ}, {¬α,β, γ}, {¬α,¬β, γ}, {¬α,¬β, ¬γ}, {¬α,β, ¬γ}

It is clear that the most typical α valuation, which is {α, β, γ}, is also the
most typical β valuation as well as the most typical γ valuation. This means
that both •α→ β and •α→ •γ also holds.

Factual Detachment We assume that we have ©(β | α) and α, and then
check the if ©β can be derived when using LM-entailment. There is only one
case to look at as the non-conditional obligation check is trivial.

1. We have {•α→ •β} and ideally want to derive •> → •β in when α holds.
1 {α,¬β}
0 {α,β}, {¬α,β}, {¬α,¬β}

When α is true then the most typical valuation is {α, β} therefore the deriva-
tion holds.

Conjunction We assume that we have ©(β | α) and ©(γ | α), and then check
if©(β∧γ | α) can be derived. The cases with non-conditional obligations aren’t
checked since they will equivalent to Deontic Detachment.

1. We have {•> → •β, •> → •γ} and ideally want to derive •> → •(β ∧ γ).
1 {β,¬γ},{¬β,γ},{¬β,¬γ}
0 {β,γ}

It is clear that we get •> → •(β ∧ γ) as the best valuation is {β, γ}.
2. We have {•α→ •β, •α→ •γ} and ideally want to derive •α→ •(β ∧ γ).

1 {α,¬β, γ},{α,¬β, ¬γ}, {α,β, ¬γ}
0 {α,β, γ}, {¬α,β, γ}, {¬α,¬β, γ}, {¬α,¬β, ¬γ}, {¬α,β, ¬γ}

‘There is only one best α valuation and it is {α, β, γ} therefore we can derive
•α→ •(β ∧ γ).
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6.3 LM-entailment

We present the paradox once again and then translate it into a PTL version.
The LM-entailment model is then presented and afterwards we show that the
undesirable derivations, from section 4.4, can no longer be derived. This is despite
the satisfaction of all the properties. The paradox’s statements are translated into
the following PTL knowledge base, {•> → •¬k, •k → •g}. With this knowledge
base comes the background knowledge g → k and the fact k. The background
knowledge means that the valuation {g,¬k} must be omitted from the model.

2 {¬g, k}
1 {g, k}
0 {¬g,¬k}

Fig. 2. LM-entailment model for Forrester’s paradox

RSA, Weakening and Conjunction Now using Weakening we can go from
•> → •¬k to •> → •¬g as the model shows that the most typical valuations are
¬g valuations. This is equivalent to the derivation of “You must not kill gently”
from “You must not kill anybody” in section 4.4. But unlike in section 4.4, one
cannot derive •k → •¬g using RSA. The model blocks this derivation since the
best k valuations are g valuations in this model.

Factual Detachment and Conjunction The issue presented in section 4.4 is
blocked because once we assume the fact k in the model, the ¬k valuations are
removed as seen in the following model. The model shows that the derivation of
•> → •¬k, which means “You must not kill anybody”, is not possible, and thus
when k is assumed the derivation of •> → •(¬k ∧ g) is blocked in the model.

7 Conclusion

The focus on this paper was to explore the extent that PTL can be used to
deal with Forrester’s paradox. After detailing the paradox and its issues, we
presented PTL and the LM-entailment algorithm. Section 6.1 then presents how
we represent the paradox using PTL. We then see that there is a way to use
LM-entailment to solves the issues with Forrester’s paradox. Section 6.2 shows
that PTL satisfies the deontic properties we desire in our restricted environment.
These are the properties which are the source of the paradox’s issues. Section
6.3 then shows that the undesirable derivations from section 4.4 are avoided by
the models produced by LM-entailment algorithm. This shows the potential that
PTL possesses when applied in a deontic setting and this potential is explored
further in the ongoing research study. This approach differs from other Forrester’s
paradox solutions such as those by Sinnott-Armstrong [17] and Meyer [11] in that
it avoids the need for the expansion of the representative language using actions
and/or logic quantifiers. Now the question to be asked is if PTL can be used on
a variety of other examples to similar effectiveness.
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