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Abstract. The number of applications of machine learning methods
used for storage forecasting is increasingly showing their ability to out-
perform process driven methods, which are generally data intensive, with
some specific types of data which are difficult to find. The specific struc-
ture of long-short term memory, which presents the ability of learning
the long-term patterns is a competitive alternative that produce state
of the art results in terms of time series forecasting. This paper inves-
tigates their application for storage forecasting in the case of the Lake
Chad Basin, by comparing a 12, 24 and 36 window size univariate and
multivariate LSTM. The results obtained indicate that the multivariate
approach, with 36 window size produces the best predictions, in terms
of sensitivity to ouliers, with a RMSE of 5.79 m3, and an overall per-
formances, with a MAPE of 10.73%. A comparison of RMSE, with the
existing literature indicate that LSTM may present better abilities to
predict streamflows.
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1 Introduction

Lake reservoirs are important freshwater suppliers for irrigation, livestock, and
fishing [20, 11]. If provided with commendable accuracy, lake storage predictions
can be very useful for water resources management, such as water allocation [14].
This explains the increasing interest on investigating new methods for storage
forecasting. The existing literature on lake storage forecasting is organised into
two categories, namely (1) space based approaches; and (2) the statistical based
approaches. The space based approach distinguishes between direct and indirect
calculation methods [8]. Direct methods are used when dealing with reservoirs of
a small dimension, but become difficult to implement when considering reservoirs
of a lake size with irregular shapes of both underwater and water surface. It
results mostly in inaccurate water storage estimation. Indirect methods, namely
mid area and prismoidal methods are suitable alternatives [7, 9]. They are based
on the subdivision of underwater and surface shapes into well-known geometric
figures, such that the overall reservoir volume can be expressed as the sum of
surface layers. These approaches are effective and accurate, but lack efficiency
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in terms of workload and costs of labour and equipment to collect the necessary
data [15]. Besides, these methods are only suitable for short-term estimation of
reservoir storage. Statistical methods are able to handle storage prediction for a
longer period of time.

Statistical approaches for lake storage forecasting use historical data to mimic
the fluctuating behaviors of lake inflows [14]. This family of approaches in-
clude multiple linear regression (MLR) [6, 11], stochastic modeling, autoregres-
sive moving average (ARMA) [13], chaos techniques [23, 21, 12], genetic program-
ming (GEP) [11], adaptive-neuro-fuzzy inference system (ANFIS) [6, 13], Non-
linear Local Prediction (NLP) technique, and artificial neural networks (ANNs)
[4, 11, 10, 13].

The literature has experienced an increasing number of studies which applies
ANNs for storage forecasting, and their comparison with other approaches have
shown their superiority over other statistical approaches (see Table 1). Never-
theless, the investigation of other promising architectures of neural networks,
especially the Long Short-Term Memory neural network (LSTM) remains very
limited. The aim of this study is therefore to implement and deploy a LSTM neu-
ral network, for three years ahead storage forecasting in the Lake Chad basin.
This implementation considers two scenario, namely (1) the case where only lag
variables derived from the storage time series data are considered in the forecast-
ing process; (2) the case where the lag storage variables are combined with other
atmospheric variables, to predict future storage in the lake Chad basin. The
steps involved in the process include: (1) Data description; (2) Selection of input
variables; (3) Formalisation of the LSTM model; (4) Results and discussion; (5)
Conclusion.

Case study RNN ANFIS ARMA AR -
Lake Egidir 0.27 0.36 0.31 0.51 -

NLP ANN SARIMA GEP MLR
Lake Trafford 0.13 0.11 0.11 0.12 0.12

ANN ANFIS ARMA GEP -
Lake Iznik 0.073 0.089 0.5 0.07 -

Table 1. Comparison of statistical methods for storage forecasting, based on the RMSE

1.1 Data

Two data sets are used for the Lake Chad storage forecasting, namely (1) 51
years of daily storage [2], recorded from 1 956 to 2 007; (2) 56 years of daily
atmospheric data collected [24] from 1 961 to 2 007, containing 31 variables. A
summary of these datasets is presented in Table 2.

The variables in the dataset are not all of identical unit. A transformation
of all variables into dimensionless values, which range between 0 and 1, helps to
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have a dataset with variables of same unit. This makes it much easier to derive
the predictor-predictants relationship. The scaling formula is given by

x′
it =

xit −minxi

maxxi −minxi
, (1)

where x′
i is the scaled value of the variable i, at time t; xit is the actual value

of the variable i at time t; maxxi and minxi are respectively the maximum and
minimum values of a variable i.

Variables Code Description Units
Storage Daily storage in the Lake Chad basin m3

dswr Direct shortwave radiation *
lftx Surface lifted index *

mslp Mean sea level pressure *
p__f Geostrophic airflow velocity near the surface *
p__u Zonal velocity component near the surface *
p__v Meridional velocity component near the surface *
p__z Vorticity near the surface *
p_th Wind direction near the surface oN
p_zh Divergence near the surface *
p5_f Geostrophic airflow velocity at 500 hPa *
p5_u Zonal velocity component at 500 hPa *
p5_v Meridional velocity component at 500 hPa *
p5_z Vorticity at 500 hPa *
p5th Wind direction at 500 hPa oN
p5zh Divergence at 500 hPa *
p8_f Geostrophic airflow velocity at 850 hPa *
p8_u Zonal velocity component at 850 hPa *
p8_v Meridional velocity component at 850 hPa *
p8_z Vorticity at 850 hPa *
p8th Wind direction at 850 hPa oN
p8zh Divergence at 850 hPa *
p500 500 hPa geopotential height *
p850 850 hPa geopotential height *

pottmp Potential temperature *
pr_wtr Precipitable water *

prec Precipitation total mm
r500 Relative humidity at 500 hPa height *
r850 Relative humidity at 850 hPa height *
rhum Near surface relative humidity *
shum Near surface specific humidity *
temp Near surface air temperature oC

Table 2. List of atmospheric variables collected from the Global Climate Simulation
model. * denotes a dimensionless Z-score with mean zero and standard deviation one
[17].
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2 Selection of input variables

Storage forecasting in the literature is generally performed with its lag variables,
streamflows, precipitations, evaporation and infiltration as input variables [14].
The Lake Chad Basin presents incomplete dataset on streamflows, and does
not have historical data on evaporation and infiltration. Therefore, atmospheric
data as presented in §1.1 are used as canditate predictors. The input selection
criteria used to select the suitable predictors for storage forecasting is the corre-
lation coefficient. The high correlations are coloured in dark red or dark blue, for
positive or negative correlations respectively. These correlation variables help to
remove two types of variables from the dataset, namely the redundant predic-
tors and the atmospheric variables which present little correlation with historical
storage. Two predictors are redundants if they both present a correlation coeffi-
cient of close to one or minus one. If that is the case, they are likely to have
similar explanatory power on the dependent variable. One of them is removed
from the dataset, as keeping both may lead to overfitting, also considered as
multicollinearity [5].

In this case study, an independent variable (j) is considered as presenting
little correlation with the dependent variable (i) if the correlation coefficient
(ρij < 0.3).

Given the two criteria mentioned, 14 out of the 31 atmospheric variables
given in Table 2 are combined as an input variables vector xt at a specific time
t, such that xt=

[
x1t, x2t, . . . , x14t

]T . The terms of the input vector xt are given in
Table 3. The variables selected are used to design the 12, 24, and 36 windows size
models, in both the univariate and multivariate to produce an output sequence
consisting of the predicted monthly storage values, denoted by St.

The data of the variables selected are divided into training (1961 − 2000),
validation (2001− 2004) and testing (2005− 2007) sets.The training and valida-
tion sets are used to calibrate the parameters of the storage prediction model,
and the test set is used as unseen data, to evaluate the ability of the model to
perform well in the real world.

3 LSTM model

LSTM networks are composed of an input layer, hidden layers, and an output
layer. The hidden layers consist of memory cells. The structure of an LSTM
memory cell is shown in Figure 1. Each of the cells has three gates that maintain
and adjust its cell state, ct, namely the input gate (it), the forget gate(ft), and the
output gate (ot). At every time step t, each of the three gates is presented with
the input data xt defined in Table 3 including the corresponding lag variables
denoted by xt−j , depending on the window size of the LSTM, as well as the
output of the memory cells at the previous time step (ht − 1). The selection of
input data from xt to be added to the cell state is performed at the input gate.
The identification of elements of the cell state that are not relevant is performed
at the forget gate. The output gate specifies the information from the cell state
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Variables Code Input variable Description Units
Storage St Daily storage in the Lake Chad basin km3

dswr x1t Direct shortwave radiation *
p__v x2t Meridional velocity component near the surface *
p_zh x3t Divergence near the surface *
p8_v x4t Meridional velocity component at 850 hPa *
p8zh x5t Divergence at 850 hPa *
p500 x6t 500 hPa geopotential height *
p850 x7t 850 hPa geopotential height *

pr_wtr x8t Precipitable water *
prec x9t Precipitation total mm
r500 x10t Relative humidity at 500 hPa height *
r850 x11t Relative humidity at 850 hPa height *
rhum x12t Near surface relative humidity *
mslp x13t Mean sea level pressure *
temp x14t Near surface air temperature oC

Table 3. List of the selected atmospheric data to be used for further analysis in the
storage prediction model. The units denoted by * are dimensionless Z-score with mean
zero and standard deviation one [17]

that is used as output. The mathematical operations that define the output of
the LSTM at time t, ht, is given by

it = σ
(
Wi,xxt + Wi,hht−1 + bi

)
(2)

ft = σ
(
Wf,xxt + Wf,hht−1 + bf

)
(3)

ot = σ
(
Wo,xxt + Wo,hht−1 + bo

)
(4)

c̃t = tanh
(
Wc̃,xxt + Wc̃,hht−1 + bc̃

)
(5)

ct = ft � c̃t−1 + it � c̃t (6)
ht = ot � tanh

(
ct

)
(7)

where Wi,x, Wi,h,Wf,x,Wf,h, Wo,x, Wo,h and Wc̃,x, Wc̃,h are weight matri-
ces, and bi, bf , bo and bc̃ are bias vectors. Furthermore, σ denote the Sigmoid
activation function, and � denotes the Hadamard product. Finally, the output
ht is used to the estimate storage output St at time t by

Ŝt = Wsht (8)

where Ws is a projection matrix to reduce the dimension of ht. The weights ma-
trices are updated through backpropagation, in an optimisation process, through
stochastic gradient descent, such that only the weights that minimise the error
function are used in the final model.

The value of the error function (Ek) at the kth iteration (k ∈ K), is given
by the difference between the observed storage (St) and its predicted/estimated
value (Ŝt). This difference is squared in order to penalise the outliers in the
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Fig. 1. Memory block for LSTM artificial neural network(Author).

process of weight calibration, such that

Ek =
1

2

T∑
t=0

(
St − Ŝt

)2
k ∈ K. (9)

4 Results

The implementation of the LSTM model is done using pandas, numpy and keras
libraries in Python3.6, by following the steps presented in Algorithm 2.

Data preparation and handling is entirely conducted in Python 3.6 [19], re-
lying on the packages numpy [22] and pandas [16]. Our LSTM neural networks
are developed with keras [3] on top of Google TensorFlow, a powerful library
for large-scale machine learning on heterogenous systems [1]. We make use of
scikit learn [18], the implementation of keras in Python. Performance evalua-
tion,namely RMSE and MAPE are computed in Python 3.6, with numpy pack-
age. The LSTM network is trained on GPU clusters of Google colaboratory.

4.1 Hyperparameters selection

The architectures obtained from the trial and error search approach, and used
for both the univariate and the multivariate models are given in Table 4.

For the univariate LSTM, the 12 and 24 window size options required iden-
tical configurations to obtain reasonable accuracy. The 36 window size option,
on the other hand, required 20 000 epochs, to obtain reasonable accuracy, with
the rest of the configuration the same as with the other two window sizes.
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Fig. 2. Algorithm LSTM artificial neural network.

Univariate LSTM
Window size Nodes Epochs Lr Hidden Layer Optimizer Activation Dropout

12 8 10000 0.001 1 adam relu 0.2
24 8 10000 0.001 1 adam relu 0.2
36 8 20000 0.001 1 adam relu 0.2

Multivariate LSTM
Window size Nodes Epochs Lr Hidden Layer Optimizer Activation Dropout

12 50 2500 0.001 2 adam tanh 0.2
24 50 2500 0.001 2 adam tanh 0.2
36 50 2500 0.001 2 adam tanh 0.2

Table 4. Configuration of LSTM architectures for storage forecast.

For the multivariate LSTM, the 12, 24 and 36 window size options re-
quired identical configurations to obtain reasonable accuracy, with 50 nodes,
2 500 epochs, a learning rate (Lr) of 0.001, 2 hidden layers, a hyperbolic tangent
optimizer and a dropout of 20 percent.

Multivariate LSTM presents a more complex architecture, with a higher num-
ber of nodes and hidden layers, as well as different activation functions. Never-
theless, the smaller number of epochs in the multivariate architecture suggests
less computing time, as opposed to the univariate approach. This shows that
additional features in the network helps the algorithm to easily identify the in-
herent patterns between the dependent and independent variables.

The suitability of selected hyperparameters is proven on the loss function plot
(see Figure 3 and 4), by both the absence of overfitting or underfitting between
the training set and the validation set, as well as an asymptotic variation of
the average loss function to zero, as the number of epochs reaches the selected
threshold.
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Fig. 3. Plots of loss function values for the training and validation of the univariate
storage prediction model with LSTM.

Fig. 4. Plots of loss function values for the training and validation of the multivariate
storage prediction model with LSTM.

4.2 Evaluation and comparison of model performances

An ensemble method is used to determine both the stability and the perfor-
mances of the storage prediction models. The average performance metrics of
30 simulations performed with the best univariate and multivariate LSTM, are
given in Table 5.

Results indicate that the multivariate LSTM with window size 36 produce
the smallest RMSE (5.79) and MAPE % (10.73) on the test set, as compared to
the best performing univariate approach, which show a RMSE of 6.3m3, and a
MAPE of 37.15% on the test set. The multivariate LSTM with window size 36
is subsequently used for storage forecasting in the net water supply estimation
model. Output from this model may be used to forecast lake storage for three
years ahead, with an estimated accuracy of 89.27%. The graphical representation
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Univariate LSTM
Window size Train Validation Test

RMSE MAPE RMSE MAPE RMSE MAPE
12 9.4 28.57 18.66 65.2 40.09 65.19
24 9.28 30.05 19.35 58.75 6.79 39.85
36 8.27 36.66 12 39.58 6.3 37.15

Multivariate LSTM
Window size Train Validation Test

RMSE MAPE RMSE MAPE RMSE MAPE
12 18.4 16.5 16.14 13.99 17.99 16.28
24 1.73 4.49 1.04 1.77 14.38 16.07
36 12.99 9.2 4.87 7.45 5.79 10.73

Table 5. LSTM accuracy for three years storage forecast.

of the model output, provided in Figure 5 and Figure 6 are visual evidences of
the lather interpretations.

Fig. 5. Univariate LSTM model outputs for three years ahead storage forecast.

5 Conclusion

The aim of this paper was to compare the univariate and multivariate Long
Short-Trem Memory artificial neural networks (LSTM) for storage forecasting
in the Lake Chad basin. The data of 51 years lenght, were used for the purpose.
For both the univariate and multivariate approaches three window size models
were investigated, namely 12, 24 and 36. The 36 months window size model was
found to be the most accurate, with and average RMSE of 6.3 m3 and an average
MAPE of 37.15% for the univariate approach, and a mean RMSE of 5.79 m3 as
well as an average MAPE of 10.73% for the multivariate approach. A comparison



10 NC. Fouotsa et al.

Fig. 6. Multivariate LSTM model outputs for three years ahead storage forecast.

Reservoir names RMSE (m3) Forecasting method
Lake Buchanan 19.04 RAPID

Canyon Lake 12.19 RAPID
Livingston Lake 58.24 RAPID

Egirdir Lake 16.45 ANFIS
Egirdir Lake 11.48 RNN
Egirdir Lake 16.96 AR
Egirdir Lake 16.72 ARMA
Lake Trafford 28.97 Lyapunov exponent

Lake Chad 5.79 Multivariate LSTM
Table 6. Sample of RMSE of storage forecasting models [6, 14, 11].

of the prediction accuracy between the univariate and the multivariate LSTM
for three years storage forecasting indicates an outperformance of the multivari-
ate approach. A further comparison of the 36 window size multivariate LSTM
accuracy with a sample of previous studies identified in the literature (see Table
6) also demonstrate a better RMSE for the multivariate LSTM proposed in this
paper. Hence, multivariate LSTM, with atmospheric predictors, may present a
promising approach to obtain state of the art accuracy, in terms of long-term
storage predictions. This also show that large scale atmospheric variables, which
are easier to obtain, may stand as suitable predictors for storage forecasting.
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