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In traditional automated text scoring approaches stop-words are either immediately 

removed or authors do not give importance to the handling of stop-words [1, 2, 3]. 

Recent studies have, however, found that removing stop-words may adversely affect 

certain models and should not be considered a standard component of the text pre-pro-

cessing pipeline [4]. Given an essay, the task is to predict a numerical score or grade. 

To improve the accuracy of existing neural network approaches for essay scoring, re-

cent attempts have focused on developing increasingly complex neural networks with 

little to no consideration of the text pre-processing pipeline [5, 6, 7].  

In this work we investigated the text pre-processing pipeline for automated text scor-

ing (ATS). We investigated how stacked LSTMs coupled with an adjustment to the text 

pre-processing pipeline and basic word embedding models can achieve results on par 

with the state-of-the-art. We used the ASAP dataset to train a basic LSTM deep learning 

model. For automated text scoring, which is concerned with the quality of writing, stop 

words contain crucial information for the system to predict accurate scores and should 

therefore, remain in text. We compared cases with and without stop-words removed to 

determine if there are any significant changes in the score prediction accuracy. We also 

compared two- and three- layer deep LSTMs to identify any significant differences.  

We found that keeping stop-words present significantly improves the prediction ac-

curacy of the model while increasing the depth of the neural network shows no statisti-

cal significance. We showed that simple deep learning models coupled with tailored 

text pre-processing achieve results on-par with state-of-the-art models reducing the 

need for complex models and feature engineering for automated text scoring. 

The ASAP dataset [8], sponsored by the Hewlett Foundation for a Kaggle competi-

tion, has been used extensively for neural text scoring and contains 12,976 essays, 

marked by two raters. The essays range in length between 150 – 650 words and were 

written by students in Grades 7 – 10. For this experiment, we used this dataset with the 

resolved combined domain score between the two raters.  

We constructed two- and three-layer LSTMs. We did not lemmatize or stem the es-

says. We cleaned the text by removing punctuation and special characters. All the text 

was converted to lower-case. Importantly, in the case where we kept stop-words pre-

sent, we did not identify dataset-specific stop-words and opted not to remove stop-

words via the use of stop-word lists. For the removal of stop-words we used a popular 

word list from a python NLP library (NLTK1). We tokenized the essays into word and 
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sentence lists for each essay respectively. The sentences were passed into the 

Word2Vec [9] embeddings model where feature vectors were created. Each essay was 

then treated as a set of tokens at sentence level. The tokens, token length, vocabulary 

size and embeddings were then used as input to the deep LSTM networks. The networks 

were regularized using both regular and recurrent dropout set to a probability of 40% 

each. The mini-batch was set to 64 and the networks were trained for 10, 20 and 30 

epochs, respectively. We optimized using both RMSProp and Adam. We tested the 

difference in output of 2- and 3-layer LSTMs and evaluated using the official evaluation 

metric of the Kaggle competition, the Quadratic Weighted Kappa (QWK), which we 

computed over the whole test set. We conducted an independent two-tailed t-test be-

tween removing stop-words and keeping them present for each model. 

Special characters and punctuation are thought to be non-informative features con-

tained within the text corpus, but they also concatenate with the words they are close 

to. This renders the words unavailable in the dictionary and contributes adversely to the 

vector space generated by the word embeddings model. For stop-word removal we ap-

plied the NLTK stop-word list to remove all stop-words within the corpus. Stop-words 

are words that are thought to be common and non-informative, examples include: 

“and”, “then”, “is”, “a”. Contrastingly we opted to train and test the models without 

removing stop-words at all. In both LSTM networks we see statistical significance in 

the comparison between removing and not removing stop-words for each respective 

model (p < 0.0001). We used the two most common optimizers for ATS, RMSProp and 

Adam. Results fluctuate ever so slightly between optimizers, however, Adam shows 

better results overall. Adam also proves to be the most efficient, reducing training time, 

on average, by 10s per epoch. 

Unlike the approach of Alikaniotis et al. [10], we did not create Score Specific Word 

Embeddings (SSWEs) but employed the use of basic Word2Vec to create word embed-

dings for us. Notably Alikaniotis et al. reported their state-of-the-art model scored a 

QWK of 0.96 for a 2-layer BiLSTM using SSWEs. Comparatively our model scores a 

QWK of 0.70 with stop-words removed and 0.956 without removing stop-words using 

Word2Vec embeddings. Our 2-layer LSTM model provides results already on par with 

current state-of-the-art, our deeper 3-layer LSTM gives us a QWK of 0.959. In our 

experiments we did not find any statistically significant difference in increasing the 

depth of LSTM models, both with and without stop-words removed (p > 0.05). 

In conclusion, we explored the text pre-processing pipeline for ATS. Our findings 

show that for ATS on the ASAP dataset not removing stop-words not only significantly 

increases model performance but allows LSTMs to achieve very promising results. We 

found that for ATS as much content as possible needs to be preserved. ATS is meant to 

support teaching and learning by providing quick and accurate feedback. Accuracy can 

only be achieved if the model sees as much content as a teacher would see. Removal of 

stop-words, therefore, diminishes the quality and content of an essay. 
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Appendix: Tables of results 

Tables 1 and 2 describe the results obtained from the two- and three-layer LSTM mod-

els respectively.  

Table 1. 2-layer LSTM stop-word comparison. 

Training Stop-words removed Stop-words present Optimizer 

10 epochs 0.6432 0.8896 RMSProp 

 0.6657 0.9126 Adam 

20 epochs 0.6947 0.9433 RMSProp 

 0.6999 0.9481 Adam 

30 epochs 0.7057 0.9540 RMSProp 

 0.7075 0.9561 Adam 

Table 2. 3-layer LSTM stop-word comparison. 

Training Stop-words removed Stop-words present Optimizer 

10 Epochs 0.6569 0.8930 RMSProp 

20 Epochs 0.7038 0.9508 RMSProp 

30 Epochs 0.7082 0.9563 RMSProp 

 0.7098 0.9585 Adam 

 


