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Abstract. The Windy-Postman Problem is a common variation of the
Chinese Postman or Route Inspection Problem, a well-known problem
in Graph Theory, in which the shortest closed walk, crossing every edge
at least once, must be found in a graph. The Windy-Postman variation
adds that the weight of an edge traversal depends on the direction the
edge is traversed. The problem is known to be NP-Hard. It serves to
model routing problems experienced in many real-world situations. This
paper present a genetic algorithm that was used to find near-optimal
solutions for the problem. Experimentation shows that the algorithm
finds reasonably good solutions that are within two to seven percent of
the optimal.
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1 Introduction and Background

The famous Seven Bridges of Königsberg problem is the first example of a routing
problem in Graph Theory (it is in fact the first recorded graph theory problem).
In the town of Königsberg, seven bridges connected two islands to the land on
either side of a river. The problem asked whether it was possible for one to cross
all seven bridges exactly once and end up where one started. This problem was
solved by Leonard Euler in 1736, and in fact it was in solving this problem that
Euler laid the foundation for the field of Graph Theory. Euler showed that this
feat was not possible, by proving that it was a necessary condition that if there
exists a closed walk in a graph traversing each edge exactly once, then all the
vertices in the graph must have even degree. This condition is also sufficient
for such a closed walk to exist. Graphs that satisfy this condition are known as
Eulerian Graphs, and the closed walk crossing each edge exactly once is known
as an Eulerian circuit.

The original Chinese Postman Problem (Route Inspection Problem) is to find
the shortest closed walk that visits each edge in an undirected graph at least
once. This problem was originally studied by Chinese Mathematician, Kwan Mei-
Ko in 1960. This problem differs from the Seven Bridges of Königsberg problem,
in that it is a route-finding problem, not a decision problem, which also allows
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edges to be repeated, and generalises the problem to any undirected weighted
graph.

The Chinese Postman Problem can be solved in polynomial time, and in
the special case where the graph is Eulerian, the graph’s Eulerian circuit is
the optimal solution. Polynomial time solutions are based on this special case,
whereby some edges are repeated (these are optimally chosen) in order to produce
an Eulerian multi-graph.

The Windy Postman Problem is a generalisation of the Chinese Postman
Problem, focusing on finding the shortest closed walk in an undirected graph,
but with the difference that each edge may have a different weight depending
on the direction of its traversal. Therefore, for any vertices u and v connected
by an edge, the weight of edge (u, v) does not have to equal the weight of edge
(v, u).

This problem is NP-complete. It has been shown that this problem can be
solved optimally in polynomial time for some special cases, such as if the Windy
Graph is Eulerian [3], and various heuristic techniques have been proposed that
yield good solutions to some cases.

A Genetic Algorithm is a metaheuristic technique based on the principle
of natural selection, whereby potential solutions are modelled as chromosomes,
which undergo genetic operations over a number of generations, which modify
the chromosomes, in order to iteratively improve the current best solution.

2 The Windy Postman Problem

The Windy Postman Problem is stated in [1] as follows, “Let G be a connected
undirected graph, such that for every e ∈ E, (e = (x, y), the distance from x to
y can be different from the distance from y to x. Find the shortest postman tour
for graph G.”

The term tour refers to a closed-directed walk in a graph traversing each
edge in the graph at least once.

This problem can be restated [1] as:

Given an undirected windy graph, construct a symmetric directed graph
D = (V,A), where the vertex set V is the same as the vertex set of
G, and corresponding to each edge e = (u, v) in E, there are two arcs
a′ = (u, v) and a′′ = (v, u) in A, and both a′ and a′′ have distances
corresponding to the distance of the directed edge crossing in G.

Now the original problem is equivalent to finding the shortest directed closed
walk w in D, such that for every edge e in E, at least one of the corresponding
arcs a′ or a′′ are in w.

The second, equivalent phrasing of the problem is easier to work within the
context of this Genetic Algorithm.
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3 Literature Review

As far as the authors are aware, no attempt has been published to solve the
WPP using a genetic algorithm. However, many papers have been published on
heuristic approaches and exact algorithms to special cases of graphs.

The most comprehensive paper on the WPP ([2]), outlines much of the known
mathematical framework of the problem. Notably it provides a proof that the
WPP is NP-Hard. This paper presents a special case polynomial time algorithm
for an exact solution, for graphs in which for every cycle, the distance around the
cycle is the same irrespective of the direction the cycle is traversed. This special
case exact solution can be used, as a heuristic solution for the problem, because
most practical graphs under consideration almost always satisfy the special case
constraint.

The Windy Postman Problem has a polynomial time exact solution on Eu-
lerian graphs [3]. A heuristic algorithm, Win’s algorithm, for the general case
WPP based upon the Eulerian algorithm is also presented in [3].

A comparison between existing heuristic algorithms and some modifications
of those algorithms is given in [9], which shows that in so far as heuristic ap-
proaches to the WPP are concerned, Win’s algorithm performs the best.

An exact solution using a branch and cut technique is presented in [8] which
is shown to find exact solutions for large graphs of up to 3000 vertices and 7000
edges. This is the best-known approach to find exact solutions to the Windy
Postman Problem

While no papers could be found attempting a genetic algorithm for the WPP,
there are several [5], [6], [7] addressing similar routing problems, most notably
optimising a Travelling Salesman Problem with a genetic algorithm approach.
These papers give a sense of the power of a genetic algorithm approach to routing
problems in general.

4 Problem Analysis

Let G = (V,E) be a windy, undirected graph, and D = (V,A) be its correspond-
ing directed version, as described earlier in the problem statement.

Now the problem of finding a minimum closed walk in a windy graph is not
exactly straight forward in the context of a genetic algorithm. Ensuring the edge
inclusion constraints while minimising unnecessary edge repetition, all the while
trying to minimise the weight of an ordered series of edge crossings seems to be
difficult at best.

Some of these difficulties need to be eliminated in order to use a genetic
algorithm. First, it is observed that the optimal windy postman tour of G, can
be used to construct an Eulerian directed multi-graph, whose Eulerian circuit,
is the optimal windy postman tour.

The proof of this is trivial, simply tracing out the arcs in the tour sequentially
will form this Eulerian directed multi-graph.
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Now instead of looking for an optimal windy postman tour of G, the tours
corresponding to Eulerian directed multi-graphs can be found.

It is known that an optimal Windy Postman tour of G, is also a shortest
directed closed walk w in D, with, for each edge e in G, there is at least one
occurrence of either corresponding arc a′ or a′′ in w. Let us refer to these arcs,
one occurance of either the arc a′ or a′′ in w for each edge e in G, as α, the
set of necessary arcs. Other than the necessary arcs, it also can be seen that
the rest of the additional arcs (these are necessarily arcs corresponding to some
edge repetitions) in w, are only present in order to complete the closed directed
walk w (forming the tour). In other words, these arcs are only necessary to form
a spanning Eulerian directed multi-graph, together with the arcs in N . Let us
refer to these arcs as β the set of additional arcs.

Now it may not at first seem clear, but

Theorem 1. Given any set α, that is a set containing an arc a′ or a” for each
edge e in G, the set of arcs β, needed to form a minimum weighted Eulerian
directed multi-graph containing all of the arcs in α can found.

Proof. Let X = (V,A1) be directed graph, such that A1 contains only the arcs
present in the set α. Now let Y = (V,A2) be a directed multi-graph, such that
A2 contains a copy of all the arcs in A, as well as a copy of all the arcs in A1.
Clearly, Y is a super-multi-digraph of X and D, and is strongly connected (as
D is a spanning subgraph of Y and is clearly strongly connected), and therefore
one can solve the Directed Chinese Postman Problem on Y , by any appropri-
ate method, which effectively creates a super-multi-digraph of Y , Z = (V,A3),
which is an Eulerian directed multi-graph (whose Eulerian circuit is the solution
to the Directed Chinese Postman Problem).

Since Z is Eulerian, the indegree of any vertex equals the outdegree of that
vertex for all vertices in Z. However, D, which is clearly Eulerian too, is a sub-
graph of Z, therefore we can form a digraph P = (V,A4), where A4 contains all
the arcs present in A3, with each corresponding arc removed for each arc in A
(so P = Z D). Clearly P must be an Eulerian directed multi-graph too.

Now X is a subgraph of P , as Y , the multigraph formed of X and D’s arcs,
was a subgraph of Z, and P is Z with D removed.

Finally, we let H = (V,A5) be a directed multi-graph with A5 having all arcs
in A4, then removing a corresponding arc for each arc in A1 (so H = P X).

Clearly the set of arcs of H is the set of additional arcs needed to form a
minimum weighted Eulerian directed super multi-graph containing all the arcs
in α (those in X). H is the minimum digraph that satisfies the excess in/out
degree matching for X.

If this in fact was not the case, then by using the actual minimum weighted
set of additional arcs, we could find a better solution to the Directed Postman
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Problem solved on Y earlier, which is not consistent.
ut

It is also clear that P is therefore the minimum weighted Eulerian directed
super-graph of X.

Now the problem of finding a shortest directed closed walk in D is now
replaced with the problem of selecting the set of arcs in α, one of either a′ or a′′

for each edge e in G, that minimises the weight of the Eulerian directed graph
(in this example P ), formed from these necessary arcs (those forming X) and
the additional arcs (those forming H). Once this digraph is found, its Eulerian
Circuit can be found using any of the known algorithms, and this circuit will be
the optimal windy postman tour of G.

This problem is more amenable to a solution using a Genetic Algorithm then
the initial problem.

Furthermore, it is also known that the path p between any two connected
vertices u and v in H must be the shortest possible path between those 2 ver-
tices, in the directed graph D, as if this were not the case for any two vertices u
and v, another digraph of lighter weight could be formed, by replacing the arcs
in p in H with the arcs in the shortest path between u and v.

5 A Genetic Algorithm for the Windy Postman Problem

The Genetic Algorithm is used to decide the set of the necessary arcs, one of
either a′ or a′′ for each edge e in G, that minimises the weight of the Eulerian
directed super-graph.

The chromosomes each consist of their own directed graph X, as well a
representation of the directed multi-graph H, that together form the Eulerian
directed multi-graph P . H is found by using a simple greedy heuristic version of
a minimum-cost flow matching, that matches the excess in and out degrees of
the vertices of X. The heuristic version matches each excess in-degree of a vertex
u with its closest available excess out-degree, being v, using the shortest path
between u and v as the path that’s added to H. These vertices are matching in
a random order.

The Selection Method first employs elitism, initially selecting 10% of the
fittest individuals to the next generation. The population is then shuffled around
slightly to allow less fit individuals to crossover with a more fit individual. The
remaining 90% needed for the next generation are taken from the population by
pairing off the neighbouring individuals lying in the top 90% of the population.
The bottom 10% of the population are lost.

An individual’s fitness is simply calculated as the weight of the Eulerian
directed multi-graph formed by the arcs in the stored directed graphs X and H.
This fitness is the actual weight of the tour that this individual’s choice of X
forms. There are 2 crossover methods and a single mutation method.

The first of the crossover methods takes two individuals and, after randomly
selecting how many (less than a given bound) arcs to swap, swaps the choice of
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arc, a′ or a′′, corresponding to some randomly chosen edge e in G, between the
2 indivduals in their directed graphs X. So, for example, given individuals C1

and C2, if a selected edge for crossing over corresponds to arc a′ in C1 and a′′ in
C2, then C1 will then change that corresponding arc to a′′ and C2 will change
that arc to a′. This crossover method may not always result in a change to either
individual, as when the edges selected for crossing over were identical in both
chromosomes for all attempts. If no crossover occurs, then the mutation operator
is applied to both chromosomes, creating a new chromosome and reducing the
build-up of identical chromosomes over time.

The second crossover method takes two individuals, C1 and C2, and, starting
with a random edge in C1, finds a path along in X of C1 so that as long as the
direction is still uniform in the path for C1, and the path has not yet formed
a cycle, that direction of edge traversal is copied to C2. This crossover is used
less frequently than the first one but is useful to ensure the uniform direction of
edges traversed along a cycle.

The mutation operator simply operates on a single chromosome by randomly
flipping, for any randomly chosen edge e in G, the corresponding arc a′ or a′′ in
X, from one to the other, a random but bounded number of times. The mutation
rate is set at 0.20. Once the fittest chromosome has been found after a set number
of generations, the Eulerian circuit is created from the resulting Eulerian directed
multi-graph contained in the fittest individual, using Hierholzer’s Algorithm.

If the fittest individuals resulting tour is not optimal, we can attempt to
further optimise it by ensuring that the following condition is held.

Theorem 2. In any closed directed-walk T in a graph G, containing at least one
of the arcs a′ or a′′ for each edge e in G, if more than 2 arcs exist between any
2 vertices u and v, and these arcs include both directions (both a′ and a” exist
between u and v in T ), then a better directed-walk T ′ can be created, satisfying
the same edge inclusion constraint, by removing two arcs from T (exactly one of
a′ and one of a′′) which go in opposing directions between u and v.

Proof. Let T be such a closed directed-walk, and let u and v be vertices such
that there exist between u and v more than 2 arcs, including at least one of these
arcs going from u to v, call it x, and at least one other arc going from v to u, call
it y. Now we can use T to form an Eulerian directed multi-graph as described
earlier, let’s call it M , with T being the Eulerian circuit of M . Vertices u and v
each both have their in-degree equal to their out-degree in M , and since arcs x
and y both together add exactly one to the in-degree and out-degree of both u
and v, and by constructing a new directed multi-graph N , by removing x and y
from M , we have a new Eulerian directed multi-graph, as all of N’s vertices too
have their in-degrees equal to their out-degrees. N ’s Eulerian circuit, T ′, still
satisfies the edge inclusion constraint as more than 2 arcs existed between u and
v, and therefore T ′ is a better closed walk satisfying the same edge inclusion
constraint. ut
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6 Evaluation and Validation

The Genetic Algorithm was evaluated on two data sets, one which we randomly
generated, and an existing data set, which also contained the optimal values for
the solutions. This dataset1 is described in [8]. It is also noted that none of the
graph in both data sets contained multi-edges or loops.

It was found that the WPP on any graph G, containing a cut-vertex, can be
reduced to a set of WPP’s on some number of subgraphs of G. Thus, in trying to
find a solution to the WPP, it is never necessary to try optimising a WPP on a
graph containing a cut-vertex, and therefore we prevent all randomly generated
test graphs from having any cut-vertices. (It follows immediately from this that
the WPP need never be optimised on any graph containing a bridge edge either,
since each vertex connected by a bridge edge is itself a cut-vertex)

Theorem 3. Let G = (V,E) be a graph containing a cut-vertex v, with G − v
having k disjoint components labelled K1,K2, ...,Kk. Solving the windy postman
problem on G, can be reduced to solving multiple windy postman problems on a
set of subgraphs of G, where each subgraph Gn is the vertex-induced subgraph of
G on {V(Kn) ∪ v} ∀ n ∈ {1, 2, ..., k}.

Proof. Let G = (V,E) be a graph containing a cut-vertex v, with G− v having
k disjoint components labelled K1,K2, ...,Kk, and let Gn be the vertex-induced
subgraph of G on {V(Kn) ∪ v} ∀ n ∈ {1, 2, ..., k}. Note each edge e in G is in
exactly one vertex-induced subgraph Gi. [All edges are clearly in exactly one
vertex-induced subgraph Gi, as an edge either connects two vertices within a
disjoint component Ki, or connects a vertex from a disjoint component Ki to v]
First it will be shown that the solutions to the WPP on these subgraphs can be
used to construct a tour of G, then this tour is shown to be optimal.
Let Tn = WPP(Gn), ∀ n ∈ {1, 2, ..., k}. Clearly Tn is a directed-cycle in its
respective subgraph Gn, ∀ n ∈ {1, 2, ..., k}, and all of these directed-cycles can
be assumed to begin at vertex v, which is a vertex in all subgraphs and is
therefore along a tour of any subgraph. Since Gn is a subgraph of G, Tn is a
directed-cycle in G, ∀ n ∈ {1, 2, ..., k}. Let T = T1T2...Tk. T is a directed-cycle
in G, and T traverses every edge in G, as every edge is in some Gi and hence in
some corresponding tour Ti. Therefore T is a tour of G
Now it remains to show that T is an optimal WPP solution for G.
Let T ′ = WPP(G) and assume for the sake of contradiction that w(T ′) < w(T )
[w(T ) denotes the weight of T ]. Let x and y be any two vertices lying in different
components of G − v. Any walk between x and y must pass through v, the
cut-vertex, and therefore any directed-cycle containing both x and y must pass
through v at least twice. This implies that any directed-cycle not lying only
within one subgraph Gi, can be split up into smaller directed-cycles at vertex v,
such that those directed-cycles each lie only in one subgraph. Splitting T ′ up into
such directed-cycles, let Cn denote the set of directed-cycles lying in subgraph
Gn, ∀ n ∈ {1, 2, ..., k}. Since all directed-cycles were formed by splitting larger

1 http://www.uv.es/ corberan/instancias.htm
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directed-cycles on v, all directed-cycles contain v, and therefore we can form a
single directed-cycle T ′n, lying only in Gn by joining all directed-cycles in Cn as
they all contain v, ∀ n ∈ {1, 2, ..., k}. As every edge in Gn is in T , every edge
in Gn in is in some directed-cycle in Cn, ∀ n ∈ {1, 2, ..., k}. Therefore T ′n clearly
forms a tour of subgraph Gn, ∀ n ∈ {1, 2, ..., k}.
It is known that w(T ′) = w(T ′1) + w(T ′2) + ... + w(T ′k) and w(T ) = w(T1) +
w(T2) + ... + w(Tk) and therefore w(T ′1) + w(T ′2) + ... + w(T ′k) < w(T1) +
w(T2) + ... + w(Tk) [by the assumption]. This means that ∃i st. w(T ′i ) < w(Ti),
however Ti is the optimal WPP of Gi and therefore there is a contradiction. ut

Test graphs were randomly generated by the following procedure:

1. First the number of vertices in the graph were selected, as well as the lower
edge bound.

2. Random simple cycles containing at least 3 vertices were formed by selecting
vertices in a sequence.

3. Once a cycle was formed, the edges in the cycle were added to the random
graph if they were not already present.

4. The resulting graphs were checked to be cut-vertex free.
5. The weights of the edges were randomly generated, with the constraint that

for any edge e, with directional weights x and y, 0.5 ≤ x/y ≤ 2 . This ensures
that the discrepancy between the directions is never too great. All weights
were also bounded by a max of 200.

Graphs of order 125, 250 and 500 were generated, each respectively having 3
sets of 50 graphs, of size 2× order, 4× order and 6× order, totalling 9 sets of
50 graphs.

7 Results and Discussion

The results of the Genetic Algorithm are tabulated as follows, firstly starting
with our generated graphs.

For each graph size, the average of 50 different graphs and scores is recorded.
The Lower bound is given by the solution to the Chinese Postman Problem on
an identical undirected graph, having the lesser of each edge’s directed weights
as the edges undirected weight.
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Table 1. Summarised Table of Results of the Genetic Algorithm on the Generated
Graphs

#Vertices #Edges GA Soltion CPP Lower Bound GA Solution / CPP Lower Bound Time (s)

125 389 20098 18352 1.09 112
125 537 27208 25340 1.07 135
125 788 38674 36879 1.05 175
250 830 43782 38844 1.13 335
250 1102 56658 51671 1.10 397
250 1590 79860 74518 1.07 577
500 1980 106463 92477 1.15 903
500 2232 118824 104549 1.14 1382
500 3153 162815 147060 1.11 2011

The Genetic Algorithm performed reasonably well in these examples, as the
Chinese Postman Problem lower bound, usually bounds the WPP solution well
below the optimal. It is also noted that the greater the density of the graph,
the lesser the discrepancy between the lower bound and the score of the Genetic
algorithm. This is because there are more possible paths to choose between any
two vertices in the denser graphs.

Table 2. Summarised Table of Results of the Genetic Algorithm on the Graphs with
known Optimal Solutions

Graph Dataset Label Optimal Solution GA Solution GA Solution / Optimal Solution Time (s)

WB0531 37970 38640 1.02 2226
WB0532 37903 39131 1.03 2309
WB0535 35400 36647 1.04 2437
WB0541 47785 49139 1.03 1863
WB0542 48243 49688 1.03 1922
WB0545 44034 46377 1.05 1982
WB0551 62782 64365 1.03 2417
WB0552 59536 61922 1.04 2290
WB0555 55263 58644 1.06 2355
WB0561 78086 79814 1.02 2315
WB0562 71649 74911 1.05 2085
WB0565 66350 71218 1,07 2316

The Genetic algorithm performed very well on these instances, that were
designed to model real world graphs, potentially used for applications of the
WPP, avoiding having edges that are excessively long. The Genetic Algorithm
clearly falls short of finding the optimal solutions to these graphs, but as an
approximate approach these results are acceptable.
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8 Conclusions and Future Work

The Genetic Algorithm approach to the Windy Postman Problem yields promis-
ing results, and it seems this method is very good when approximate solutions
are sufficient.

Future work on this genetic algorithm on the Windy Postman Problem could
involve redesigning the genetic operations to help avoid local minima, which is
a common issue of GAs. The formulation of the problem so that it is friendlier
to a Genetic Algorithm might also be improved upon.

Other optimisation metaheuristics may be attempted to find near-optimal
solutions to the problem. The Windy-Postman problem is reduced in this paper
to an equivalent problem of selecting either arc a′ or a′′ for each edge e in G,
in order to minimise the fitness function. This problem can be restated in terms
of finding some binary string, in order to minimise a function, where each index
in the binary string represents an edge e in G, being either 0 or 1, representing
the choice of corresponding arc a′ or a′′. Any metaheuristic technique that can
optimise a function evaluated on a binary string, can be used to find near-optimal
solutions to the Windy-Postman Problem.

This Genetic algorithm could also be expanded to find solutions to the Windy
Rural Postman Problem, a further generalisation of the Windy Postman Prob-
lem. A genetic approach to the Mixed Postman Problem, another NP-complete
variant of a routing problem, could also be attempted.
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