
Amharic Light Stemmer

Girma Neshir1, Andeas Rauber2, and Solomon Atnafu3

1 IT Doctroal Program, Addis Ababa University, Ethiopia , girma1978@gmail.com
2 Technical University of Vienna, Institute of Information Systems Engineering, Austria,

rauber@ifs.tuwien.ac.at
3 Addis Ababa University, Department of Computer Science, Ethiopia

solomon.atnafu@aau.edu.et

Abstract. Stemming is the process of removing affixes(i.e. prefixes, infixes and

suffixes) that improve the accuracy and performance of information retrieval sys-

tems.This paper presents the reduction of Amharic words to corresponding stem

where with the intention that it preserves semantic information. The proposed

approach efficiently removes affixes from an Amharic word. The process of re-

moving such affixes (prefixes, infixes and suffixes) from a word to its base form

is called stemming. While many stemmers exist for dominant languages such as

English, under resourced languages such as Amharic which lacks such powerful

tool support. In this paper, we design a lightAmharic stemmer relying on the rules

that receives anAmharic word and then it finds a match to the beginning of a word

to the possible prefixes and to its ending with the possible suffixes and finally it

checks whether it has infix. The final result is the stem if there is any prefix, infix

or/and suffix, otherwise it remains in one of the earlier states. The technique does

not rely on any additional resource (e.g. dictionary) to verify the generated stem.

The performance of the generated stemmer is evaluated using manually annotated

Amharic words. The result is compared with current state-of-the-art stemmer for

Amharic showing an increase of 7% in stemmer correctness.

Keywords: Amharic light Stemmer · Affixes · Sentiment Classification

1 Introduction

Amharic is a highly morphological rich language that adds more challenge for the stem-

mer performance. The main aim of stemming is to reduce the different morphological

(e.g. inflectional or derivational) variations of word forms associated the linguistic in-

formation such as number, case, gender, tense, definitive, functional, etc. to its common

base form or roots [10]. In this work, we follow a simple methodology that depends on

the removal of affixes fromAmharic words. The idea for designingAmharic stemmer is

relying on stripping affixes of Amharic words. The algorithm in the stemmer searches

a match of substring pattern expressions which represents affixes from Amharic input

word to produce the remaining substring ofAmharic word as base form if one of affixes

is found. In other words, the rules in the patterns used in the stemmer help to reduce af-

fixes from a word. The patterns representing the affixes ofAmharic language are imple-

mented using python library. In general, the existing stemmer algorithms have problems

2 Girma Neshir, Andeas Rauber, and Solomon Atnafu

stated as follows: (i) Amharic is a morphologically rich language, that makes develop-

ment of efficient stemmer very difficult. E.g. A givenAmharic verb can have more than

80 different forms. (ii) It is difficult to handle infixes appropriately by a stemmer. (iii) It

is challenging to identify and stemAmharic compoundwords as the language is complex

in nature and thus it is not governed by specific rules. (iv) Handling loan words adds ad-

ditional factors in degrading the performance of stemmer. (v) It is a universal problem

to develop stemmer algorithms with minimal errors as it is caused by over-stemming

or under- stemming and mis-stemming. Specifically, in this research, we try to answer

the following research questions: (i) how do we handle the best possible prefixes lists,

suffixes lists and set of conditions to enforce reduplicative words in Amharic texts? (ii)

How can we design light stemmer for Amharic texts? (iii) How can we evaluate and

enhance the performance of the stemmer? (iv)Does stemming improve performance of

Amharic sentiment classification system? The rest of this paper is organized as follows:

in the section 2, the related works are presented. The proposedAmharic Stemmer is de-

scribed in section 3. In section 4, stemmer evaluations are presented. Conclusions and

recommendations are drawn in section 5.

2 Related Work

In this section, we briefly present few of related works.Authors in [9] presented detailed

evaluations of stemming algorithms in information retrieval systems where information

retrieval experiments are demonstrated and investigated details of methodology evalu-

ations. Similar survey of stemming algorithms in information retrieval is also presented

in [11] that review the types of stemming algorithms, problems in stemming algorithms,

metrics to evaluate stemming algorithms, short-comings and benefits in information re-

trieval. The approaches of existing works related to stemmer are categorized into three

types of stemmers: truncating (affix removal (Lovins, Porters, Dawsons, etc.), statistical

(ngram, HMM,YASS) andmixed (corpus based, Xerox, context sensitive) [10,2]. Stem-

mer development was restricted in English. Nowadays, stemmers are adapted and con-

structed in other languages: Spanish, Urdu, Arabic, Amharic and so on. For East Asian

languages, the work in [2] develops pattern based Urdu stemmer that is designed to re-

move prefixes, affixes and suffixes. In addition, the Urdu stemmer handles irregular and

loan words prior to affixes removal. It performs with average accuracy of 85.02%. Fi-

nally, this stemmer is applied for short text classification and performs well with 87.4%.

On similar languages, authors [2] introduce hybrid stemmer that combines rule based

and HMMbased approaches for East Indian languages. Dictionary of frequent words are

introduced to handle over-stemming and under-stemming.As suffixes of Eastern Indian

languages is dominantly identified by one character that cause to producemis-stemming.

So to handle this problem, authors applied HMM based approaches. A stem is extracted

by computing the most probable path in four HMM states of each word. The stemmer is

evaluated and obtained accuracies 94% forAssamese and Bengali, 87% for Bishnupriya

Manipuri and 82% for Bodo languages. For stemming Arabic texts, authors in [3] de-

velop pattern basedArabic stemmer that removes affixes (prefixes, suffixes and infixes)

to get three letter roots. The approach does not rely on any dictionary. It de-fines tem-

plate matching rules to decide whether a letter belongs to the root or not. This stemmer

Amharic Light Stemmer 3

algorithm is evaluated on 72 abstracts with 10582 words of accuracy is 92%. Another

work in [14] develops efficientArabic stemmer that extract roots without relying on root

dictionary. The performance of this stemmer is similar to Khoja stemmer onArabic Trec-

2001 collection. This work reveals that root dictionary does not improve performance

of monolingual Arabic document retrieval. For stemming Amharic texts, there are few

works carried out. The work in [5], the authors developed rule based Amharic stemmer

using dictionary look-up (machine readable dictionary). This stemmer also relies on cor-

pus statistics to resolve ambiguities of citation forms. The approach in [5] contains 65

rules to reduce anAmharic word to citation form for cross-lingual information retrieval

applications. The accuracy of this stemmer is 60% and 75%, for old fashion fiction text

and news text, respectively. The first Amharic stemmer developed in [1]. The authors in

[1] proposed an iterative approach to develop Amharic stemmer for hoping to improve

performance of Amharic text retrieval system. This stemmer tries to handle prefixes

and suffixes and it is evaluated with accuracy of 95% on 1221 words from different do-

mains. In [4], authors present Finite state toolset for complete morphological analysis of

Amharic word classes. For eachAmharic word, the toolset generates features including

root, pattern and feature tags(person, gender, part of speech, case, mood, tense and so

on) for the purpose of aligning parallel corpus using Xerox Finite state tools. Verbs are

the most complex part of speech inAmharic [4]. Almost all other POS are derived from

verbs and verbs usually have roots with tri-radical consonants. The work in [6] develops

corpus based approach using successor variety algorithm with peak and plateau method

to stemAmharic texts. This approach with peak and plateau method performs (accuracy

of 71.8%) better than successor variety algorithm with entropy (accuracy of 63.95%)

on news corpus with 6270 words. The recent work in [7] builds a morphological tool

for three languages (Amharic, Oromo and Tigreygna). The tool is both morphological

analyzer and morphological generator relying on Finite State Transducer (FST) where

its processes includes rules from surface level(alteration rules: phonological & ortho-

graphic) to lexical level(morphotactics). ForAmharic and Tigreygna, the morphological

analyzer part of the developed tool(HornMorpho) is evaluated. For 200 Amharic verbs,

200 Amharic nouns and 200 Tigregna verbs, morphological analyzer has accuracies of

99, 95.5 and 96%, respectively. This work tries to address morphological analysis and

generation of open source tool for the aforementioned languages. Even though this tool

has a lot of features, it has a number of associated constraints and limitations. The ma-

jor one is lack of coverage of the languages and computationally expensive to return

the linguistic features of a given Amharic input word. Specifically, it is slow and takes

up more memory space while execution of the program. To reduce this problem, we

try to develop efficient Amharic light stemmer for Amharic Sentiment classification.

As Amharic is one of Semitic family, nouns and verbs are derived from limited roots.

In other words, if surface words are reduced to roots, it loses semantic information of

the original text. Thus, we design a light stemmer of Amharic language where it keeps

semantic information by removing frequent prefixes and postfixes of the input word.

Our approach is similar to the approach in [1] in that it is affix removal. However, the

stemmers in both [1,7] are reducing an Amharic Surface word to a root word where as

our proposed light stemmer reduces the surface word to a stem that preserves semantic

information of the original word. This one of the reasons why we inspired to develop

4 Girma Neshir, Andeas Rauber, and Solomon Atnafu

light stemmer rather than root(heavy) stemmer. Our aim is to test how better our light

stemmer for sentiment classification while comparing it with the available root stem-

mer(benchmark) [7].

3 Proposed Amharic Stemmer Framework

Amharic light stemmer is proposed almost from scratch. This stemmer is built to re-

move prefix and suffix using manually compiled affix lists and a specific set of condi-

tions is also set to enforce removal of infix from Amharic word. Prefixes and suffixes

are removed using longest match in pattern with regular expression. In other words,

affixes with largest length is removed first, and smallest affixes removed last. If any

of the affixes has no match in string patterns of Amharic word, the stemmer algorithm

terminates. Moreover, we set the minimum length of the stem/root to be at least two

characters. The proposed framework contains different steps for developing efficient

algorithm for Amharic light stemmer that preserves sentiment information. The frame-

work for Amharic stemmer is shown in Figure 1 below.

Fig. 1. Amharic Light Stemmer Framework

Each of the major elements of the proposed framework are stated as follows:

3.1 Amharic Corpus

For evaluating the generated stems, we use the following corpora and lexicons.

i. Amharic News Corpus: For theAmharic words list in [13], stems/roots for these words

are generated for evaluation of the developed Amharic stemmer. The performance in

terms the factors stemmer strength and index compression factor are computed and the

values of the metrics are compared with the performance of HornMorpho in [7].

ii. Amharic Facebook Comments: The data sets for evaluating the performance of the

Amharic stemmer for hoping to improve accuracy of Amharic sentiment classification

at sentence level.

iii. Amharic Sentiment Lexicons:TheAmharic sentiment lexicons includesmanual (1000)

Amharic Light Stemmer 5

[8], Amharic SentiWordNet(SWN)(13679)[12] andAmharic Semantic Orientation Cal-

culator(SOCAL) (5683)[12]. These lexicons are used to compute the sentiment score of

the Amharic texts for testing and evaluating the performance of the generated Amharic

light stemmer with respect to the state-of-the art(SOTA).

3.2 Preprocessing

We apply basic preprocessing steps on Amharic News Comments. These include nor-

malization of Amharic script symbols, tokenization, stop word should be identified and

removed as they carry no information. Contractions or acronyms should also be prop-

erly normalized or expanded. Amharic punctuation marks such as (full stop), (double

colon), (single quote), -(preface colon), ‹‹ ››(double quotes) and so on should be re-

moved. Amharic script symbols are adapted from Geez alphabets. Each alphabet has

7 different syllabic forms (or orders) representing consonant-vowel (CV) pairs (called

phonemes). The first order is the base form and the other are derived uniformly from it

relying on the vowel sounds (ኧ ኡ ኢ ኣ ኤ እ ኦ) referring to the English vow-
els (ä, u, i, a, e, o), respectively. Authors in [17] argued that the sixth
alphabets represent the consonant scripts and the remaining orders are re-
flecting implicitly the corresponding vowel sounds as it is shown in Table 1.
There are 33 base alphabets and 7 orders (33 syllables times 7 orders gives
231syllables plus 5 characters with 4 orders of labialized velars and plus
24 additional labialized consonants gives a total of 275 characters(called
‘fidels’)). As these syllables are directly taken from Geez, there are lists of
redundant alphabets (ሀ፣ሐ፡ኀ)፣(ሰ፡ሠ)፡(ጸ፡ፀ)፡(ዐ፡አ) represents the same sound.
Those in brackets are redundant base forms. The last pair (ዐ፡አ) represents
the Amharic vowels and the remaining 31 represents consonants of Amharic.
In this research, first we normalize these redundant symbols into a common
symbol. That is, (ሀሃሐሓኀኃኻ=>ሀ)፣(ሠ=>ሰ)፡(ጸ=>ፀ)፡(አ=>ዐ)፡([ቆቈቖ=>ቆ)፡
(ቁቍ=>ቁ)፡(አኣዐዓዐ)፡(ኮኰ=>ኮ)፡(ጎጐ=>ጎ)፡(ኋዃሗ=>ኋ). For example, the pair
of Amharic words such as: አለምጸሀይ፣ሀይለ ሥላሤ፡ቈነሰ vs ቆነሰ፡ ቍጥር vs ቁጥር፡
መኮንን vs መኰንን፡ ጎንዳር vs ጐንዳር are referring to the same thing [15]. The
problem of these variations in Amharic writing is due to the fact that
the geez alphabets are directly inherited without any semantic or pho-
netic distinctions. There are also variations in writing of the same sound
is represented by different Amharic syllable. E.g. ኢትዩጵያ vs ኢትዩጲያ፡ጅግና
vs ጀግና፡አቸነፈ vs አሸነፈ፡ባቄላ vs በኤላ [6]. Then, to handle the vowel fea-
tures of the language explicitly, we require conversion of Amharic scripts to
consonant-vowel form by developing mapping lookup table, similar to SERA
[15]. Particularly, before performing stemming, the algorithm converts each
Amharic word to its consonant vowel form.

3.3 Convert Amharic word to Consonant-Vowel form

Amharic writing is semi-syllable where each symbol represents both con-
sonant and vowel. Though the first order of the alphabets are treated as
the base forms. However, [17] argued that the sixth order of the alphabets

6 Girma Neshir, Andeas Rauber, and Solomon Atnafu

should be Amharic consonants rather than first order. So the rest of the
orders carry consonant-vowel sounds. Thus, we follow argument in [17] to
handle this linguistic feature in this research, except the sixth order, we
explicitly convert all other orders of each Amharic symbol to corresponding
Amharic consonant symbol followed by vowel form. Moreover, Amharic has
vowel sound symbol ኧ ኡ ኢ ኣ ኤ እ ኦ generated at pharynx እ /’Aa’/. Alterna-
tively, it has equivalent Amharic symbol ዕ/Aa/. For normalization purpose,
we use earlier symbol as vowels and the later representing the pharynx
phoneme እ /Aa/ in this research. Table 1 depicts the 7 orders of Amharic
alphabets with coresponding CV in amharic and in SERA transliteration
forms.

Table 1. Amharic Consonants with 7 orders which are converted consonant vowel form shown in

brackets. Left to the bar refers to the consonant vowel in Amharic and right to the bar denotes the

consonant vowel transliterated into Romans using SERA.

- 1st Order 2nd Order 3rd Order 4th Order 5th Order 6th Order 7th Order

1 ሀ/ህኧ/Hä/ ሁ/ህኡ/Hu/ ሂ/ህኢ/Hi/ ሃ/ህኣ/Ha/ ሄ/ህኤ/He/ ህ/H/ ሆ/ህኦ/Ho/

2 ለ/ልኧ /Lä/ ሉ/ልኡ/Lu/ ሊ/ልኢ/Li/ ላ/ልኣ /La/ ሌ/ልኤ/Le/ ል/L/ ሎ/ልኦ/Lo/

3 መ/ምኧ/Mä/ ሙ/ምኡ/Mu/ ሚ/ምኢ/Mi/ ማ/ምኣ/Ma/ ሜ/ምኤ/Me/ ም/M/ ሞ/ምኦ/Mo/

4 ረ /ርኧ/Rä/ ሩ/ርኡ/Ru/ ሪ/ርኢ/Ri/ ራ/ርኣ/Ra/ ሬ/ርኤ/Re/ ር/R/ ሮ/ርኦ/Ro/

5 ሰ/ስኧ/Sä/ ሱ/ስኡ/Su/ ሲ/ስኢ/Si/ ሳ/ስኣ/Sa/ ሴ/ስኤ/Se/ ስ/S/ ሶ/ስኦ/So/

.

.

.

33 ፈ/ፍኧ/Fä/ ፉ/ፍኡ/Fu/ ፊ/ፍኢ/Fi/ ፋ/ፍኣ/Fa/ ፌ/ፍኤ/Fe/ ፍ/F/ ፎ/ፍኦ/Fo/

34 ፐ/ፕኧ/Pä/ ፑ/ፕኡ/Pu/ ፒ/ፕኢ/Pi/ ፓ/ፕኣ/Pa/ ፔ/ፕኤ/Pe/ ፕ/P/ ፖ/ፕኦ/Po/

3.4 Handling Irregularities of Amharic Writing dialects into more Formal text

form

We develop some conditions to enforce and normalize the variations of
style of Amharic writing to formal form. Moreover, irregular nouns, name of
places, name of person, irregular verbs, prepositions and irregular adjectives
should be used identified to handle the exceptions to the rules of the regular
expressions that represents list of prefixes and suffix rules.

3.5 Removal of Suffixes if any

We tried to identify suffix lists that represent morphological information
such as gender, definitive, case, tense, number, part of speech and so on.
We identify 97 suffix lists which are converted consonant vowel form as it
is shown below. The ‘|’ refers to the separation of suffix list. Suffix lists :
‘ኢዕኧልኧሽ|ኣውኢው|ኣችኧውኣል|ኧችኣት|ኧችኣችህኡ|ኧችኣችኧው|ኣልኧህኡ|
ኣውኦች|ኣልኧህ|ኣልኧሽ|ኣልችህኡ|ኣልኣልኧች|ብኣችኧውስ|ብኣችኧው|ኣችኧውን|ኣልኧች|

Amharic Light Stemmer 7

ኣልኧን|ኣልኣችህኡ|ኣችህኡን|ኣችህኡ||ኣችህኡት|ውኦችንንኣ|ውኦችን|ኣችኧው|ውኦችኡን|
ውኦችኡ|ኧውንኣ|ኦችኡን|ኦውኦች|ኧኝኣንኧትም|ኧኝኣንኣ|ኧኝኣንኧት|ኧኝኣን|ኧኝኣውም|
ኧኝኣው|ኝኣውኣ|ብኧትን|ኣችህኡም|ኦውኣ|ኧችው|ኧችኡ|ኤችኡ|ንኧው|ንኧት|ኣልኡ|ኣችን|
ክኡም|ክኡት|ክኧው|ኧችን|ኧችም|ኧችህ|ኧችሽ|ኧችን|ኧችው|ይኡሽን|ይኡሽ|ኧውኢ
|ኦችንንኣ|ኣውኢ|ብኧት|ኦች|ኦችኡ|ውኦን|ኧኝኣ|ኝኣውን|ኝኣው|ኦችን|ኣል|ኧም|ሽው|
ክም|ኧው|ትም|ውኦ|ውም|ውን|ንም|ሽን|ኣች|ኡት|ኢት|ክኡ|ኤ|ህ|ሽ|ኡ|ሽ|ክ|ኧ|ኧች|
ኡን|ን|ም|ንኣ|ው’
Converted to SERA : 'iI2IaLIaX|AWiW|AcIaWAL|IacAt|IacAchU|IacAcIaW|ALI-
ahU|AWOc|
ALIah|ALIaX|ALchU|ALALIac|BAcIaWs|BAcIaW|AcIaWn|ALIac|ALIan|
ALAchU|AchUn|AchU||AchUt|WOcnnA|WOcn|AcIaW|WOcUn|WOcU|
IaWnA|OcUn|OWOc|IaNAnIatM|IaNAnA|IaNA-nIat|IaNAn|IaNAWM|
IaNAW|NAWA|BIatn|AchUM|OWA|IacW|IacU|EcU|nIaW|nIat|
ALU|Acn|kUM|kUt|kIaW|Iacn|IacM|Iach|IacX|Iacn|IacW|YUXn|
YUX|IaWi|OcnnA|AWi|BIat|Oc|OcU|WOn|IaNA|NAWn|NAW|
Ocn|AL|IaM|XW|kM|IaW|tM|WO|WM|Wn|nM|Xn|Ac|Ut|it|
kU|E|h|X|U|X|k|Ia|Iac|Un|n|M|nA|W'

3.6 Removal of Infixes if any

We understand that if Amharic verb contains pattern CaC- at the middle
of the word where C represents Amharic consonant and /a/ represents
Amharic vowel. The infix tells us something is done repeatedly performed.
E.g. ፈላለገ/'ፍኧልኣልኧግኧ'/'FeLaLege'/ means ‘search something a number of
times’. Its root becomes ‘ፍ-ል-ግ’/flg/. If Amharic noun is repeated and
connected by vowel ‘a’. This tells us something is big in number. E.g.
ቅጠላቅጠል/'ቅጥኧልኣቅጥኧል'/'qTeLaqTeL' means ‘a number of leaves’. Its root
will be ቅ-ጥ-ል/qTL/. Thus, to remove such infixes, we enforce conditional
rules.

3.7 Removal of Prefixes if any

We also identified 30 prefix lists representing Amharic morphological clues.
The prefix lists are presented below.
Prefix lists: ‘ስልኧምኣይ|ይኧምኣት|ዕንድኧ|ይኧትኧ|ብኧምኣ|ብኧትኧ|ዕኧል|
ስልኧ|ምኧስ|ዕይኧ|ዕኧስ|ዕኧት|ዕኧን|ዕኧይ|ይኣል|ስኣት|ስኣን|ስኣይ|ስ ኣል|
ይኣስ|ይኧ|ልኧ|ክኧ|እን|ዕን|ዐል|ይ|ት|አ|እ’ Converted to SERA: 'sLIaMAY|YIa-
MAt|I2ndIa|YIatIa|BIaMA|
BIatIa|I2IaL|sLIa|MIas|I2YIa|I2Ias|I2Iat|I2Ian|I2IaY
|YAL|sAt|sAn|sAY|sAL|YAs|YIa|LIa|kIa|In|I2n|
IeeL|Y|t|a|I'

3.8 Removal of Vowels and then we get stem or root form

At the end of the stemming process, we transform the Amharic consonant-
vowel form to a root form that only contains Amharic consonants. It is shown

8 Girma Neshir, Andeas Rauber, and Solomon Atnafu

in the example above section 3.6 (ፍ-ል-ግ/flg/, ቅ-ጥ-ል/qTl/). Our proposed
stemmer is light weight stemmer as it considers affix removal to get the stem
or root of Amharic word without considering any additional dictionary. The
algorithm matches all possible affixes (suffixes, infixes and/or prefixes). And
the process starts from longest match and then shorter match. For example,
to stem the word ቤታቸውን, the longest match suffix is first searched in the
pre-fix list and removed from the word. The longest suffix is -ኣችኧውን in
ቤታቸውን. However, both -ኣችኧውን and -ውን are in the suffix list. Thus, to
find the stem of ቤታቸውን, the suffix ውን is not removed first rather the
longest match suffix -ኣችኧውን is removed first. Specifically, for the proposed

Amharic Light Stemmer 9

Amharic light stemmer, the stated steps are implemented in algorithm 1.

Algorithm 1: Light Stemmer Algorithm of Amharic Text

Input: wordorginal: input word

Output: word_stem: output stemmed word

1 sufix← r'(̂.*?){ (ኢዕኧልኧሽ|ኣውኢው|ኣችኧውኣል|

ኧችኣት|ኧችኣችህኡ|ኧችኣችኧው|ኣልኧህኡ|ኣውኦች|ኣልኧህ|ኣልኧሽ|ኣልችህኡ|

ኣልኣልኧች|ብኣችኧውስ|ብኣችኧው|ኣችኧውን|ኣልኧች|ኣልኧን|ኣልኣችህኡ|

ኣችህኡን|ኣችህኡ|ኣችህኡት|ውኦችንንኣ|ውኦችን|ኣችኧው|ውኦችኡን|ውኦችኡ|

ኧውንኣ|ኦችኡን|ኦውኦች|ኧኝኣንኧትም|ኧኝኣንኣ| ኧኝኣንኧት|ኧኝኣን|ኧኝኣውም|

ኧኝኣው|ኝኣውኣ|ብኧትን|ኣችህኡም|ኦውኣ|ኧችው|ኧችኡ|ኤችኡ|ንኧው

|ንኧት|ኣልኡ|ኣችን|ክኡም|ክኡት|ክኧው|ኧችን|ኧችም|ኧችህ|ኧችሽ|

ኧችን|ኧችው|ይኡሽን|ይኡሽ|ኧውኢ|ኦችንንኣ|ኣውኢ|ብኧት|ኦች|ኦችኡ|

ውኦን|ኧኝኣ|ኝኣውን|ኝኣው|ኦችን|ኣል|ኧም|ሽው|ክም|ኧው|ትም|

ውኦ|ውም|ውን|ንም|ሽን|ኣች|ኡት|ኢት|ክኡ|ኤ|ህ|ሽ|ኡ|ሽ|ክ|ኧ|ኧች|ኡን|

ን|ም|ንኣ|ው)?$'}

2 prefix← r'(̂.*?){

r'(̂ስልኧምኣይ|ዕንድኧ|ይኧትኧ|ብኧምኣ|ብኧትኧ|ዕኧል|ስልኧ|ምኧስ|ዕይኧ|ዕኧስ|ዕኧት|ዕኧን|

ዕኧይ|ይኣል|ስኣት|ስኣን|ስኣይ|ስኣል|ይኣስ|ይኧ|ልኧ|ክኧ|እን|ዕን|ዐል|ይ|ት|አ|እ)(.*)$'

}

3 word_CV_form←convert_to_CV(wordoriginal)

4 try: if 'ዕንድኣ' in word_CV_form and len(word_CV_form)>2: then

5 word_CV_form←word_CV_form.replace('ዕንድኣ','ዕኣ')
6 if 'ጭኣል' in word_CV_form and len(word_CV_form)>2: then

7 word_CV_form←word_CV_form.replace('ጭኣል','ጥኣል')

8 if 'እኧስ' in word_CV_form and 'ኝ'==word_CV_form[len(word)-1] and

len(word)>2: then

9 try: word_CV_form←word_CV_form.replace('እኧስ','ስ')
word_CV_form←word_CV_form[:len(word_CV_form)-1] except: pass

10 if 'ዕ'== word_CV_form[0] and 'ኧ'== word_CV_form[2] and

len(word_CV_form)>2: then

11 word_CV_form←word_CV_form[1:]
12 if 'ዕኧልኣ' in word_CV_form and len(word_CV_form)>2: then

13 word_CV_form←word_CV_form.replace('ዕኧልኣ','ዕኣ') except: pass
14 if len(word_CV_form)>3: then

15 word_stem, suffix ← re.findall(suffix, word_CV_Form)[0]

16 try: word_stem ← re.findall(prefix, word_CV _Form)[0][1] except: pass

17 if len(word_CV_form)<3: then

18 word_stem←word_CV_Form
19 word_stem←remove_vowel(word_stem)
20 Return word_stem

Description: The algorithm in 1 takes preprocessed Amharic word which
is not in the stop wordlist. In lines 1 and 2, the manually compiled suffix
and prefix lists are loaded respectively. In line 3, the input word is converted
into consonant -vowel(CV) form. From line 4 to line 13, the input word
is normalized if it has change of consonants due to vowels. In line 14,

10 Girma Neshir, Andeas Rauber, and Solomon Atnafu

if the input word length is greater than 3, then in line 15, the input
word is tested whether it contains the one or more of suffixes in the suffix
list. If it contains, the suffix is recursively removed from largest length to
smallest length. Following this action, in line 16, the outputed word from
the previous step is tested if it contains one or more prefixes from the prefix
list. If it contains, the prefix is removed recursively from largest length to
smallest length prefix. In lines (17-18), the outputed word from previous
step is tested whether its length is not less than 3. Finally, in line 19, the
output word is converted to consonant form by removing vowels.

3.9 Sentiment Score Calculation

The sentiment score of each stemmed word has a match with either of
the Amharic Sentiment lexicons (Manual, SOCAL, SWN), then the sentiment
score is added for each Amharic news comment. Finally, the score is inverted
if the comment contains any negation clue. As our approach to sentiment
score calculation is the simplest case, intensifier or negation scope is not
considered. Finally, the sentiment class of the comment is decided based
on the value of the computed sentiment score. If the score is greater
than zero, then the sentiment of the comment is positive. If the score is
less than zero, the sentiment of the comment is negative. Otherwise, the
sentiment of the comment is unclassified or neutral or mixed. Consider the
ith Amharic ,a, news comment Cai in Amharic News Comments da has
preprocessed and finally, the comment is tokenized into lists. The Amharic
Sentiment Lexicon is denoted by sa . As part of preprocessing, we normalized
not only all Amharic words in the Amharic News Comments but handling
entries of Amharic Sentiment Lexicon by replacing varied alphabets of the
same sound with identical symbols. Moreover, a stemmer is applied after
negation identification is completed. As Amharic is morphologically rich,
light stemmer is used to reduce the mismatch of Amharic words during string
comparison operation. Thus, the effect of light stemmer on the performance
of Amharic Sentiment classification is investigated shortly.

4 Evaluation of the stemmer

In this section, we present the discussion related to the evaluation of
the developed stemmer. The evaluation is made in two ways: including
stemmers’ performance metrics (e.g. stemmer strength and index compression
factor) and present whether the proposed stemmer improves performance of
Amharic sentiment classification.

4.1 Stemmer Strength

This tells us the average size of the group of words converted to a par-ticular
term regardless of whether they are correct or not. The stemmer strength

Amharic Light Stemmer 11

is measured by computing the number of words per conflation class. Mean
of Words per Conflation class (MWC) = N/S, where N is number of words
before stemming and S is number of words after stemming. The higher the
value of the MWC, the stemmer is heavy (or strong) stemmer where it has
errors due to over stemming. On the other hand, the smaller the value of
the MWC indicates that the stemmer is light (or weak) stemmer where there
are errors due to under stemming. The value of MWC of our stemmer is
presented in Table 2 on small and large corpus.

4.2 Index compression factor(ICF)

This is another way of evaluating stemmers’ conflation rate. This specifies the
extent to which the stemming operation reduces the input word collections
to manageable size of index terms for efficient performance of information
retrieval. In other words, the smaller the size of the index means that it
requires smaller capacity of storage space necessary to store index terms.
The value of this factor tells to what extent the collection of words are
compressed or reduced by the stemmer. It is calculated as:

ICF = (N − S)/N (1)

where N is number of words before stemming and S is number of words
after stemming. Table 2 depicts the values of ICF of our stemmer on small
and large corpus. This result indicates the extent of compression of index
terms for IR applications. Table 2. The values of performance metrics of
stemmers (Ours and HornMorpho)

Table 2. The values of performance metrics of stemmers (Ours and HornMorpho)

Word Size Metrics Our Stemmer HornMorpho

13968 (LARGE)

No roots 3574 2138

MWC*̂ 3.91 6.53

ICF*̂ 0.744 0.846

248 (SMALL)

No roots 35 30

MWC*̂ 7.09 8.27

ICF*̂ 0.86 0.88

4 Discussion:Table 2 presents the performance metrics result of our stem-
mer compared to performance of hornmorpho on small and large corpus.
The result is depicted in terms of parameters including the number of
roots generated mean of words per conflation class and in-dex compres-
sion factor. Based on the results of stemmers, the strength of our stemmer

4 *MWC stands for Mean of Words per Conflation class, and *ICF stands Index compression

factor

12 Girma Neshir, Andeas Rauber, and Solomon Atnafu

is weaker (or lighter) than Hornmorpho by nearly a factor of 0.5. That
means, hornmorpho removes more affix related strings which could contain
semantic information as it removes affixes to get root from input word.
On the contrary, our stemmer removes fewer characters from input word
to get its corresponding root/stem. For text classification (e.g. sentiment
classification), our stemmer might be better than Hornmorpho. This is one
of the factors we need to evaluate our stemmer’s performance on sentiment
classification. The index com-pression factor of our stemmer is almost close
to hornmorpho. This indicates that our stemmer is compressing index terms
to considerable level that could save storage space to use it for Information
retrieval applications.

4.3 Stemming Errors

In general, there are two major sources of errors. These include over-
stemming where the stemmer removes too many of a term. This tends to
make the recall of IR to be high. In other words, the different meanings
of terms are diluted into stems. More affixes that contain more semantic
information are cleared from the root. On the other hand, under- stemming
where the stemmer removes too few of a term. This causes the recall lower.
That means a single concept is distributed over a number of stems. In
addition, the stemmer could also remove affixes which were part of the
root. This leads to an error refers to mis-stemming. Both error types lead
to poor performance of the stemmer in information retrieval applications.
To this end, two or more words having actually the same stem could have
different root as sub-strings of the affix is not stripped of from the root
(=under stemming). A group of words having different stems could have
the same root by the stemmer as the stemmer removes some affixes that
are part of the roots(=over stemming). We can roughly see the number
of roots generated by our stemmer compared to Hornmorpho in Table 2
for small and large corpora. On large corpus, our stemmer generates more
roots/stems than Hornmorpho by a factor of 0.25. For small corpus, our
stemmer generates almost the same size of roots to the size of roots by
Hornmorpho. Thus, our stemmer leaves some space for holding semantic
information in the generated roots than roots of Hornmorpho.

4.4 On spot Errors Analysis

Yet it is difficult to get a perfect stemmer, there a number of errors in our
stemmer based on on-spot analysis. For the sake of simplicity in analysis and
interpreting the nature of errors generated in small corpus, let us categorize
the errors generated into common stemming error types: under-stemming,
over-stemming, unchanged, spelling errors and other mis-stemming errors
presented in Table 3.

Amharic Light Stemmer 13

Table 3.The categories of errors generated by stemmers (Ours andHornMorpho) on small corpus(

300 words)

Error Types
Number of errors (in %)

Our Stemmer HornMorpho

Under-Stemming 9%(28) 20%(60)

Over-Stemming 0%(1) 4%(11)

Spelling errors 0% 0%

Unchanged 3%(15) 1%(3)

Others 8%(24) 6%(17)

Accuracy 77%(231) 70%(208)

Discussion: For small corpus of 300 words, stemmer errors related to
under-stemming, over-stemming, spelling errors, unchanged (input word is
unchanged), accuracy and other error reports are presented in Table 3.
The errors related to under-stemming and over-stemming of hornmorpho is
higher than our stemmer. The word ቅዱስም/’kidus’ means ‘saint’ /is stemmed
ቅድ_ኡስ and ቅድስ by hornmorpho and our stemmer. But our stemmer is
correctly generating the root word ቅድስ. Hornmorpho generates stem ቅድ_ኡስ
which is not in root form and its stem size greater than the root size.
This might be error related to under-stemming. On the other hand, our
stemmer leaves greater number of input words than hornmorpho. Similarly,
the numbers of input words without root are greater in our stemmer.
However, the accuracy (77%) of our stemmer is greater than the accuracy of
hornmorpho(70%). Our stemmer has got errors on removing affixes, mainly
single letter suffix, prefix or detecting and removing reduplication is quite
problematic to the accuracy of our stemmer. For example, the word በቅዱስ
has prefix በ/b/ and has roots ቅድ_ኡስ and ብቅድስ by horn-morph and our
stemmer respectively. To address this problem, it requires disambiguation
model to recognize whether a single letter prefix or suffix is the right affix
that should be removed from the root. Some-times, reduplication strings are
part of root word. This also requires some heuristic to correctly identify the
right infix that should be re-moved from the root.

4.5 Amharic Sentiment Classification

We also evaluate the usefulness of our stemmer whether it improves the
performance of sentiment classification of Amharic facebook news com-
ments. Prior to sentiment score calculation of Amharic texts, we perform
basic text preprocessing operations (tokenization, punctuation mark removal,
normalizing Amharic script symbols, stopword removal, spelling corrector,
stemming, etc.). The effect of stemming and negation detection technique
on Amharic text is investigated to increase the accuracy of lexicon based
Amharic sentiment classification. The performance of our stemmer is com-

14 Girma Neshir, Andeas Rauber, and Solomon Atnafu

pared with performance of HornMorpho on Amharic sentiment classification
as it is shown in Table 4.

Table 4. The Accuracy (in percent) of Lexicons for Sentiment Classification)

Amharic Senti.Lexicons
Accuracies (%)

NoStem Our Stemmer HornMorpho

Manual +SOCAL + SWN 53.7 86.2 67.9

Discussions:The effect of our stemmer on the performance of Amharic
Sentiment Classification is evaluated in terms whether the accuracy of clas-
sifying sentiment of Amharic facebook news comments is increased or not.
Table 4 presents the results of sentiment classification using our stemmer
and HornMorpho. The result reveals the effect of stemming operations on
Amharic texts improving the performance of Amharic sentiment classifica-
tion. The accuracy of Amharic sentiment classification increases from 53.7%
to 86.2% by our stemmer and 53.7% to 67.9% by hornmorpho. In con-
clusion, the results of our stemmer and Hornmorph shows that applying
stemmer is necessary for efficient Amharic sentiment classification revealing
that our stemmer preserves sentiment information than root stemmers [1,7].
Besides, the performance of Amharic Sentiment classification is improved
by employing stemmer.

5 Conclusions and Recommendations

As Amharic is one of the resource limited language with rich morphology,
it is challenging and expensive to build such resources for carrying out
computational linguistic researches. To reduce this problem, we try to design
a light Amharic stemmer for generating roots for Amharic input word. The
proposed stemmer algorithm is relying on removal of affixes from input
word to generate the possible stem/root. First, we identify possible lists
of affixes including prefixes, infixes and postfixes. We construct regular
expressions and implemented in python to re-move affix from an input
word if it contains one of the affixes in the affix list. Affixes with maximum
are the first one to be removed from the input word. We evaluated the
performance this stemmer using metrics such as mean number words per
conflation class, index compression factor, over stemming, under stemming,
just to name a few. More-over, the performance of our stemmer is tested
for its accuracy improvement in Amharic sentiment classification. The result
reveals that our light Amharic stemmer improves performance of Amharic
Sentiment classification compared to hornmorpho and the cases when the
sentiment classification is carried out without using stemmer. This work
presents design of Amharic light stemmer that removes affixes for hoping

Amharic Light Stemmer 15

to efficiently improve performance of Amharic Sentiment Classification. Few
of the contributions of this work are summarized as follows:

– The work reveals that Amharic stemmer improves performance of sen-
timent classification.

– As Amharic alphabets are in the unicode, rather than transliterating
into romans using SERA in [16], we developed custom transliteration of
Amharic texts into CV form using Amharic Alphabets

– The approach developed is generic enough that it can be adapted to
develop stemmer to other resource limited languages.

– Apart from sentiment classification, our stemmer can also be used to
other tasks of natural language processing including information extrac-
tion, multilingual semantic lexicons, question and answering, just to
name a few.

– Our stemmer is light in the sense that it is efficient for IR applications in
terms of processing time to generate root word for a particular Amharic
input word with considerable accuracy.

– Related resources including the code will be accessible online for research
communities.

Yet, the developed Amharic light stemmer may lack accuracy of correctly
stemming Amharic input words. One of the reasons is that the affix list
is not comprehensive enough to cover all the variant word forms of the
same root. The other thing is that the approach we used is similar to the
approach used in look-up table that lacks context information for the affixes
specifically prefixes and suffixes of length one might be ambiguous with part
of root consonant character. So to handle this, hybrid approach or corpus
based methods should be incorporated. For Amharic Sentiment Classification,
there are still Amharic comments which are mis-classified due to a number
of reasons. The source of these classification errors including: propagation
of errors from the sentiment lexicons, annotator labels Amharic comments
with wrong sentiment category, some comments might be ambiguous, just
to name a few.

References

1. Nega Alemayehu and Peter Willett. Stemming of amharic words for information

retrieval. Literary and Linguistic computing, 17(1):1--17, 2002.

2. Mubashir Ali, Shehzad Khalid, and Muhammad Haseeb Aslam. Pattern based

comprehensive urdu stemmer and short text classification. IEEE Access,

6:7374--7389, 2017.

3. Riyad Alshalabi. Pattern-based stemmer for finding arabic roots. Information

Technology Journal, 4(1):38--43, 2005.

4. Saba Amsalu and Dafydd Gibbon. Finite state morphology of amharic. In

Proceedings of RANLP, 2005.

5. Atelach Alemu Argaw and Lars Asker. An amharic stemmer: Reducing words

to their citation forms. In Proceedings of the 2007 workshop on computational

16 Girma Neshir, Andeas Rauber, and Solomon Atnafu

approaches to semitic languages: Common issues and resources, pages 104--110.

Association for Computational Linguistics, 2007.

6. Genet Mezemir Fikremariam. Automatic stemming for amharic text- an exper-

iment using successor variety approach. Unpublished Masters Thesis and De-

partment of Information Science and Addis Ababa University and Addis Ababa,

2009.

7. Michael Gasser. Horn morpho. http://www.cs.indiana.edu/ gasser/HLTD11/,

2017.

8. S. Gebremeskel. Sentiment mining model for opinionated amharic texts. Un-

published Masters Thesis and Department of Computer Science and Addis Ababa

University and Addis Ababa, 2010.

9. David A Hull. Stemming algorithms: A case study for detailed evaluation.

Journal of the American Society for Information Science, 47(1):70--84, 1996.

10. Anjali Ganesh Jivani et al. A comparative study of stemming algorithms. Int.

J. Comp. Tech. Appl, 2(6):1930--1938, 2011.

11. Cristian Moral, Angélica de Antonio, Ricardo Imbert, and Jaime Ramírez. A

survey of stemming algorithms in information retrieval. Information Research:

An International Electronic Journal, 19(1):n1, 2014.

12. Girma Neshir Alemneh, Andreas Rauber, and Solomon Atnafu. Dictionary Based

Amharic Sentiment Lexicon Generation, pages 311--326. 08 2019.

13. Lexical Data Repository of the Ge'ez Frontier Foundation. geez data.

https://github.com/geezorg/data, 2017.

14. Kazem Taghva, Rania Elkhoury, and Jeffrey Coombs. Arabic stemming without a

root dictionary. In International Conference on Information Technology: Coding

and Computing (ITCC'05)-Volume II, volume 1, pages 152--157. IEEE, 2005.

15. Daniel Yacob. Localize or be localized.

16. Daniel Yacob. The system for ethiopic representation in ascii—1997 standard.

Webpage: http://www. abyssiniacybergateway. net/fidel/sera-97. html, 1997.

17. Baye Yimam. (የአማርኛ-ሰዋሰዉ)yäamarIña säwasäw. Educational Materials Produc-

tion and Distribution Enterprise(EMPDE), 2000E.C.

	Amharic Light Stemmer

