
Evaluation of combined bi-directional branching entropy 

language models for morphological segmentation of 

isiXhosa 

Lulamile Mzamo1[0000-0002-8867-7416]  Albert Helberg1[0000-0001-6833-5163] and  

Sonja Bosch2[0000-0002-9800-5971] 

1 North-West University, Potchefstroom, South Africa 
2 UNISA, Pretoria, South Africa 

Lula_mzamo@yahoo.co.uk, Albert.Helberg@nwu.ac.za, 

Boschse@unisa.ac.za 

Abstract. An evaluation of the IsiXhosa Branching Entropy Segmenter (XBES), 

an unsupervised morphological segmenter for isiXhosa, is presented. The seg-

menter contributes a combined bi-directional branching entropy language model 

with an option for modified Kneser-Ney (mKN) smoothing. XBES’s boundary 

identification accuracy of 77.44 ± 0.32% is comparable to the benchmark 

Morfessor-Baseline’s 77.2 ± 0.10%. XBES’s f1 score, of 58 ± 0.10%, is signifi-

cantly better than Morfessor-Baseline’s 48.9 ± 0.75%. The study shows that 

mKN smoothing degrades performance on branching entropy-based segmenta-

tion of isiXhosa, and suggests that better segmentation performance could be 

achieved in the unsupervised morphological segmentation of isiXhosa, given 

more data. 

Keywords: natural language processing, unsupervised machine learning, mor-

phological segmentation, branching entropy, isiXhosa. 

1 Introduction 

Work on the unsupervised learning of isiXhosa text segmentation, the IsiXhosa Branch-

ing Entropy Segmenter (XBES), was presented in [1]. This paper presents the bi-direc-

tional branching entropy language model implemented in XBES and evaluates the 

XBES against more metrics than just accuracy. 

Human language resources and applications currently available in South Africa are 

still limited. According to [2] this can be attributed to the dependence on Human Lan-

guage Technology (HLT) expert knowledge, scarcity of data resources, lack of market 

demand for African languages, and how the particular language relates to other more 

resourced languages. Morphological analysis is one of the basic tools in the natural 

language processing (NLP) of agglutinating languages such as isiXhosa.   

IsiXhosa is one of the South African official languages belonging to the Bantu lan-

guage family, which are classified as “resource scarce languages”. IsiXhosa is the sec-

ond largest language in South Africa with 9.3 million mother-tongue speakers (17% of 
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the South African population), second only to isiZulu [3]. Although there has been an 

increase in the tools for South African languages, this increase is from a low baseline. 

Hence there is still a need for NLP tools [4].  

IsiXhosa is closely related to other Nguni languages such as isiZulu, Siswati and 

isiNdebele and therefore work done in it could easily be bootstrapped to these lan-

guages as has been shown in [5]. Nguni languages account for 45.8% % of the South 

African mother tongue speaker population. 

2 Morphological segmentation for isiXhosa 

2.1 Morphological Segmentation 

Morphological analysis is the task of splitting one token, a word, into its constituent 

units [6], e.g. the segmentation of a word into morphemes, and classification thereof. 

Morphemes are the smallest meaning bearing component of a word [7]. In languages 

with rich systems of inflection and derivation, morphological analysis is needed in in-

formation retrieval, translation, etc. 

A differentiation is made by [8] between morphological segmentation, which splits 

words into constituent morphemes, and morphological analysis, which also classifies 

the identified morphemes. This differentiation originated in [9]. The task handled in 

this paper is morphological segmentation. 

2.2 Morphological segmentation in isiXhosa 

IsiXhosa is an agglutinating and polysynthetic language in that it usually has many 

morphemes per word [7]. It is also fusional/inflectional because morpheme boundaries 

are sometimes fused and difficult to distinguish, e.g ukwanda (to grow) is linguistically 

segmented as u-ku-and-a. The w is a result of a fusion between the u and a vowels. 

IsiXhosa words are composed of a root, prefixes, suffixes and circumfixes that attach 

to the root. The root is the main meaning carrying constituent of the word. A circumfix 

is the “simultaneous affixation of a prefix and suffix to a root or a stem to express a 

single meaning” [7]. An example of a circumfix in isiXhosa is the combination 

“a…ang..” in isiXhosa negation, e.g. a-ka-hamb-ang-a (he/she did not go). 

Each of the affixes (i.e. prefixes, suffixes or circumfixes) is made up of one or more 

morphemes. Morphemes follow one another in an order prescribed for each word type 

[10]. In isiXhosa, most roots are however bound morphemes, meaning that they never 

appear independently as words which are independently meaningful [11]. They at least 

appear as stems, which are word roots suffixed with a termination vowel [10], e.g. and-

a in ukwanda.  

2.3 Automated morphological segmentation of isiXhosa 

One of the earliest reports on automated morphological segmentation of South African 

languages is that of [12] on the automatic acquisition of a Directed Acyclic Graph 

(DAG) to model the two-level rules for morphological analysers and generators. The 
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algorithm was tested on English adjectives, inflection of isiXhosa noun locatives and 

Afrikaans noun plurals, with a 100% accuracy for isiXhosa noun locatives inflection. 

An existing isiZulu morphological analyser [13] was bootstrapped by [5] to other 

Nguni languages including isiXhosa. The study reported that 93.30% of the words (181) 

were analysed. 

Work on the development of text resources for ten South African languages was 

presented by [14], including a morphologically analysed corpus for isiXhosa. That mor-

phological segmentation corpus is used in this study as the test corpus. The corpus is 

rated at an accuracy of 84.66%.  

The most recent work for isiXhosa segmentation is that of [15], which introduced a 

lemmatiser for isiXhosa and [16] who presented the development of a rule-based noun 

stemmer for isiXhosa. The isiXhosa lemmatiser was evaluated at an accuracy of 

83.19% and the noun stemmer showed an accuracy rate of 91%. 

3 Unsupervised morphological segmentation 

The last works done for morphological segmentation for isiXhosa reported in [1] uses 

unsupervised machine learning in the morphological segmentation of isiXhosa. This is 

attractive because it bypasses the need for expensive linguistic experts or annotation of 

training data. 

3.1 Supervision in Machine Learning 

There are three modes of training a machine learning model, i.e. supervised, semi-su-

pervised and unsupervised [6]. In supervised learning, the training data contains solu-

tion examples that the model must generalise from. Data in unsupervised training is 

devoid of such, but only creates a model from raw data. Semi-supervised systems use 

anything in between, from using limited supervised data with large amounts of unan-

notated data to unannotated data with rules built into the model. 

The segmenter evaluated in this paper, XBES, uses unsupervised learning in the 

morphological segmentation of isiXhosa. 

3.2 Unsupervised morphological segmentation works 

The earliest works in unsupervised morphological segmentation used a form of acces-

sor variety, where a morpheme boundary is identifiable by the possible number of let-

ters that may follow a sequence of letters [17, 18]. This evolved to using mutual infor-

mation [19, 20], and different forms of Branching Entropy [19, 21]. 

Minimum Description Length (MDL) [22] has seen extensive use in unsupervised 

morphological segmentation, primarily as a measure of fit of the training data to heu-

ristic models and statistical models [23, 24]. The comparative standard used in this 

study, Morfessor-Baseline [25],  uses MDL and Maximum likelihood estimation. 

Clustering and paradigmatic models is another popular approach. This involves 

clustering related words into a paradigm using a similarity measure, identifying the 

stem, and considering the rest as sequences of affixes [26, 27]. A paradigm is a grouping 
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of words according to their form-meaning correspondence [28]. The similarity 

measures used are Latent Semantic Analysis [29], Dice and Jaccard coefficients [6],  

Ordered Weighted Aggregator operators [27] and affixality measurements [30]. Word 

context is also another technique that is used to identify similar words [31, 32]. 

Non-parametric Bayesian techniques have also shown promise, including Pitman-

Yor process based models [33, 34] and adaptor grammars [35]. These use Markov 

Chain Monte Carlo (MCMC) simulation with Gibbs Sampling [36] for inference. Con-

trastive Estimation [37, 38] is another non-parametric model that is showing elegance 

and promising results. 

A number of studies have used a combination of the above techniques and measures 

[16, 32]. 

3.3 Choice of unsupervised segmenter for benchmarks 

To place this work amongst other segmenters, a standard in morphological segmenta-

tion was chosen for comparison. The benchmark segmenter had to be publicly available 

and had to have been used for highly agglutinative languages like isiXhosa. The 

Morfessor-Baseline segmenter [25] was chosen because it has been used as a bench-

mark extensively and is freely available.  

To establish a minimum performance baseline a random segmenter that randomly 

decides whether a point in a word is a boundary of a segment or not was implemented. 

4 Character level language modelling 

To estimate the branching entropies, character level language modelling is required. 

Instead of using two language models, one for each direction, XBES’s implementation 

uses one model for both directions such that a dictionary entry points to a vector of two 

values, the right branching and the left branching values. This reduced the memory 

footprint. 

Both the unsmoothed and modified Kneser-Ney [39] smoothed language models 

were implemented. The language model was also extended to include an option for 

using all possible n-gram levels in one model instead of having a maximum n-gram 

level limit, i.e., an infinite-gram.  

The calculation of the VBE and NVBEs are done as specified in [1] and [40] and 

stored in the model.  

The algorithms are briefly described below. 

4.1 Un-smoothed bi-directional Branching Entropy language model 

flow 

The input to the unsmoothed modelling is a list of one directional (left-to-right) n-gram 

strings with frequency counts (n-gram, f) or a mapping of n-gram string to frequency 

counts and the process returns a single Bi-directional Branching Entropy Language 
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Model (BELM) with branching entropy values for both directions. Fig. 1 shows the 

process of the modelling. 

The sorting allows the process to do a single pass through the n-gram strings fre-

quency counts. This is important when dealing with large frequency counts as in this 

case. 

 

 
 

Fig. 1. Un-Smoothed BELM process 

The reverse frequencies are updated such that each n-gram x is mapped to a list of 

two counts such that 

The branching entropies are calculated according to [41]. The probabilities are dis-

carded after use. 

Add reverse n-
gram frequencies 
   to Mappings

Sort Mapping 
alphabetically 

Update context (h) 
Branching Entropies

Calculate probabilities 

      ,       ,

For each n-gram hc

Store hc count until used by 
all n-grams with hc as their 

context

C(x) → ( 𝑥⃗
 𝑥  

) (1) 
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4.2 The modified Kneser-Ney smoothed bi-directional Branch Entropy 

language model flow 

In this exercise, we also wanted to check if smoothing had any effect on the perfor-

mance of the branching entropy segmenter. Smoothing is necessary where there is data 

sparsity, which is the case in higher order character n-grams, i.e long n-gram strings. 

We implemented a bi-directional mKN smoothed BELM. Input to it is also a list of 

one directional (left-to-right) n-gram strings with frequency counts (n-gram, f) or a 

mapping of n-gram string to frequency counts and the process returns a single bi-direc-

tional Branching Entropy Language Model (BELM) with branching entropies for both 

directions. The process is shown in Fig. 2. 

The conditional probabilities are calculated according to [39] and the branching en-

tries are according to [41].  

 

 

 

Fig. 2. mKN Smoothed BELM Process 

The sorting by n-gram lengths and n-gram contexts ensured that lower level n-grams 

are processed first as their results are required for the interpolation of higher-level n-

grams. This also ensured that discount values could be calculated independently for 

each level. Lastly, this ensured that n-grams are clustered by context, which is key in 

mKN smoothing. All this ensured only two passes through the n-gram counts one for 

Modify Mapping 
with Adjusted 

Counts         

Generate Discount values Dkl

Add reverse n-
gram frequencies 
   to Mapping

Sort Mapping by n-
gram length and 

context 

For Each n-gram level l)

For Each n-gram level context h

For Each n-gram hc and
h<unk> in context h

Update context (h) 
Branching Entropies

Calculate Interpolated, 
conditional probabilities 

      ,       ,

Store conditional 
probabilities for back-off 

purposes

Discard conditional probabilities 
for level l-1
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generating discount values and collection interpolation statistics, and one for calculat-

ing the probabilities and updating the BELM. 

5 Evaluation 

This section details the evaluation that was done on XBES. 

5.1 Data Sources1 

A raw unannotated isiXhosa corpus of 1.45 million isiXhosa words was compiled from 

the isiXhosa version of the South African Constitution [42], isiXhosa text on the inter-

net and the IsiXhosa Genre Classification Corpus [43]. This text is named the training 

corpus. 

For testing purposes the NCHLT IsiXhosa Text Corpus (29 511 tokens) was used. 

5.2 Data Splits 

For training purposes, ten-fold training was performed for different training set sizes 

and language model n-gram lengths.  The training set sizes chosen were orders of ten 

(10) from one hundred (100) words to a million words and one and a half million (1.5 

million). The n-gram lengths were two (2) to five (5), odd numbers to nineteen (19) and 

to the maximum n-gram length possible, i.e. the infinite-gram.  

For testing purposes a subset of the NCHLT corpus was used. Because the NCHLT 

corpus was generated with a rule based morphological analyser, the solutions are not 

all surface segmentations, others include grammatic morphemes. XBES is a surface 

segmenter and was not built to handle morpheme boundary fusion. As an example the 

morphological segmentation of ukwanda is u-ku-and-a. A surface segmenter would 

segment ukwanda to u-kw-and-a. Excluding these kinds of entries resulted in an eval-

uation testing corpus of 13441 tokens.  

5.3 Experiment setup 

Training was performed for two segmenters, i.e. XBES, and Morfessor-Baseline, using 

the training corpus, and tested against the testing corpus. The random segmenter does 

not require training. Both Morfessor-Baseline and XBES were trained with different 

sizes. Because Morfessor-Baseline does not support specifying n-gram size, only XBES 

was trained to different model n-gram lengths.  

XBES provides an option of using the minimum between the right branching entropy 

and left branching entropies or the sum of the two. In addition this study tests XBES on 

unsmoothed and a modified Kneser-Ney smoothed language models [39] as detailed in 

                                                           
1 The IsiXhosa Genre Classification Corpus and NCHLT IsiXhosa Text Corpus are available at 

the South African Language Resource Management Agency, (http://rma.nwu.ac.za/index.php)  
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Algorithms 1 and 2. In addition XBES was evaluated for all the branching entropy 

modes specified in [1]. 

Evaluation of the segmentations was measured as boundary identification accuracy 

and f1 score, where, in a word, a morpheme boundary location is tagged 1 and every-

thing else 0. Accuracy measures how many boundaries and non-boundaries the seg-

menter identified correctly. The f1 score focuses on the possible boundary location and 

does not factor the non-boundary word locations. 

5.4 Results 

The overall results, including the best performance per XBES mode are shown in Table 

1. The results are shown with configuration information (i.e. smoothed or not, the op-

erator used to mix the directional branching entropies, the training set size and the lan-

guage model n-gram level that produced the results). 

 
The benchmark ten-fold validation average accuracy from Morfessor-Baseline was 

measured at 77.2 ±0.10%. The random segmenter presented an average accuracy from 

ten (10) runs of 50.1 ±0.16%. This implies that any segmenter below this threshold 

would actively degrades segmentation. 

The Random Segmenter’s average f1 score was 35.7 ±0.16% whilst Morfessor-

Baseline’s performance peaked at 10000 words with an average f1 score of 48.9 

±0.75%.  

The best 10-fold average accuracy, 77.4 ±0.32%, was achieved by the z-score nor-

malised branching entropy mode (NzVBE) of XBES at a training set size of one and a 

half million (1.5 million) words using an unsmoothed 11-gram language model and the 

sum operator. This accuracy, however, is only considered comparable to Morfessor-

baseline’s accuracy of 77.2 ±0.10% as the Wilcoxon Signed Rank test [44] p-value 

between the two was measured at 0.07446. This configuration, however, does not re-

flect the best f1 score. 

The best f1 score, 58 ±0.10 %, was achieved by the un-normalised variation of 

branching entropy mode (VBE) at a training set size of one and half million (1.5 mil-

lion) words using an unsmoothed 9-gram language model and the sum operator. This 

score is statistically better than the rest of the scores with a maximum pair-wise p-value 

of 0.0051. 

Table 1.   Boundary Identification Results 

Method Highest Accuracy (Smooth-
ing/Op/training Size/n-gram length) 

Highest f1 Score (Smooth-
ing/Op/training Size/n-gram length) 

Random 50.1 ±0.16 35.7 ±0.16 

XBES-BE 71.6 ±0.35 (No/Min/100K/4) 55.3 ±0.12 (No/Sum/1m/7) 

XBES-VBE 72.4 ±0.25 (Yes/Min/1.5m/9)  58 ±0.10 (No/Sum/1.5m/9) 

XBES-NuVBE 75.8 ± 0.60 (No/Sum/1m/11) 53.6 ±0.35 

(No/Sum/1.5m/13-max) 

XBES-NzVBE 77.4 ±0.32 (No/Sum/1.5m/11) 55.5 ±1.18 

(No/Sum/1.5m/9) 

Morfessor-

Baseline 

77.2 ±0.10(1m) 48.9 ±0.75 (10K) 
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For Normalised Variation of Branching Entropy modes, the sum of the left and right 

branching measures performed better than the minimum of the two, implying that a 

smoothing effect is better, as the sum is a form of averaging the two branching direc-

tions. Unsmoothed language models performed better than modified Kneser-Ney 

smoothed language models. This suggests that character level language modelling does 

not suffer from sparsity, which is prevalent in word level language modelling. 

Fig. 3 shows the trend of the segmenters including Morfessor-Baseline and the best 

performing XBES modes for accuracy and f1 score in relation to training set size. Be-

cause the random segmenter was not trained, it is represented as a flat line across the 

training set sizes.  

 
Fig. 3. Average accuracy and f1 score of the Random Segmenter, Morfessor-Baseline and 

the best XBES mode by training set size 

As can be seen from Fig. 3 Morfessor-Baseline’s accuracy and the best XBES mode 

peak at around 77% with maximum training set size. The f1 score is however a different 

matter.  

The f1 score of Morfessor-Baseline peaks at 10000 words and degrades whilst 

XBES’s best mode continues to grow albeit marginally. 
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6 Conclusions 

In this paper, an unsupervised morphological segmenter for isiXhosa that uses branch-

ing entropy is evaluated. The IsiXhosa Branching Entropy Segmenter (XBES) uses an 

adaptation of branching entropy techniques detailed in [40] applied to isiXhosa.  

The study contributes and summarises a single bi-directional branching entropy lan-

guage model with an option for smoothing with modified Kneser-Ney smoothing. 

The morpheme boundary identification average accuracy of XBES, at 77.4 ±0.32%, 

was evaluated to be comparable to Morfessor and it was achieved using the z-score 

normalised variance of branching entropy mode with an unsmoothed 11-gram language 

model and the sum operator when trained on 1.5 million words. 

The morpheme boundary identification f1 score of XBES, at 58 ±0.10%, performed 

better than the benchmark Morfessor-Baseline when using the un-normalised variance 

of branching entropy (VBE) mode with an unsmoothed 9-gram language model and the 

sum operator when trained on 1.5 million words.  

The results also show that XBES performance could still grow in both accuracy and 

f1 score, however those gains could cost a lot of training data. 

The results also show that using the modified Kneser-Ney smoothing provides no 

advantage when using branching entropy. 
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