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Fingerprints?

Abstract. Latent fingerprints serve as crucial evidence for law enforce-
ment agencies to punish perpetrators. They are found in almost every
crime scene. Conventionally, latent fingerprint have been obtained us-
ing destructive methods such as chemicals, dyes and tapes to lift the
print sample. These conventional methods contaminate the sample and
leave no room for further processing, such as touch DNA. In recent
years, the forensic community has been moving towards the use of con-
tactless techniques to acquire latent fingerprints. Contactless acquisi-
tion surpasses destructive techniques by allowing multiple acquisitions
of the sample and secondary pre-processing of the sample. Moreover,
there are cases where the conventional methods fail; such as acquir-
ing fingerprints deposited on thin layers of plastic, fingerprints sand-
wiched between duct tapes. For such reasons, Optical coherence to-
mography (OCT) is one of the new technologies that are correctly be-
ing investigated for latent fingerprint acquisition. The OCT technol-
ogy, however, does present some technical challenges as a fingerprint
sensor. The images that are produced by OCT are often immersed in
speckle noise. Seven most recent wavelet-based denoising techniques (Vi-
suShrink, BayesShrink, SureShrink, NormalShrink, Modified VisuShrink,
Minimax and Adaptive Threshold method) have been investigated with
the aim to find a way to suppress speckle noise on OCT fingerprint
images. Experimental results have shown that adaptive thresholding
method has superior performance compared to other wavelets techniques
in terms of signal to-noise-ratio (SNR).
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1 Introduction

In a crime scene latent fingerprints are finger impressions left unintentional by
the contact of a human finger with a surface of an object. These impressions
serve as crucial evidence for law enforcement agencies to punish perpetrators.
These type of fingerprints are found in almost every crime scene and traditionally
collected using destructive methods.

Destructive methods of lifting latent fingerprints include but not limited to
chemicals, dyes and adhesive tapes. These conventional destructive methods con-
taminate the sample and leave no room for further processing, such as touch
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DNA and drugs analysis. In recent years the forensic community has been mov-
ing towards the use of contactless techniques to acquire latent fingerprints.

Contactless acquisition methods of acquiring latent fingerprints include but
not limited to chromatic white light sensor, alternative light sources, infrared
sensors and Optical coherence tomography (OCT) [11, 5, 11, 3, 2]. These contact-
less acquisition methods pose some advantages over destructive methods; such
as allowing multiple acquisitions of the sample and secondary pre-processing of
the sample. Additionally, there are cases where traditional methods completely
fail; such as acquiring fingerprints deposited on thin layers of plastic, fingerprints
sandwiched between duct tapes. For such reasons, OCT is one of the new tech-
nologies that are currently being investigated for latent fingerprint acquisition.
The OCT technology, however, does present some technical challenges as a fin-
gerprint sensor. The images that are produced by OCT are often immersed in
speckle noise.

An image may be corrupt by noise during acquisition and transmission. Noise
degrades the quality of the image by interfering with the original image signal,
which results in the variation of pixels. The noise signal may appear as additive
or multiplicative on an image [12, 11]. Additive noise signal includes impulse
noise, Salt & Pepper noise and Gaussian white noise, while the multiplicative
noise signal includes speckle noise. Any unwanted modifications of a signal or
image are called noise. Noise may be suppressed by the process called denoising.

Denoising is the process of reducing noise from the signal. A signal can be any
gesture, action or sound that is used to convey information. In image processing,
a signal is an image. Image denoising is essential for better performance of any
authentication system. Noise removal on fingerprint images unmask important
details such as ridges endings and valleys and minimize the processing time for
subsequent operations. Various techniques for fingerprint image denoising have
been developed [9, 16, 4, 13].

In this paper, wavelet transform based techniques are implemented in an
effort to remove speckle noise from the latent fingerprint images acquired us-
ing OCT system. These techniques combined with different wavelet filters are
compared in terms of speckle noise removal and signal-to-noise ratio (SNR) is
used as the quantitative measure of that. The compared techniques are Vis-
uShrink, BayesShrink, SureShrink, NormalShrink, Modified VisuShrink, Mini-
max and Adaptive Threshold method. The wavelets filters used are haar, db2,
db4 and sym4. These techniques and wavelets filters were carefully selected from
the literature [9, 16, 4, 13] as they give positive results in terms of speckle noise
removal.

2 Data Acquisition

2.1 Optical Coherence Tomography

In this work, latent fingerprints were acquired from, brass (door handle), stainless
still (knife) and glass. A custum made spectral domain OCT system with the
specifications on table 1 was used.
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Table 1: Shows the specifications of the customized latent fingerprint OCT ac-
quisition device.

Base Unite GAN610

Central Wavelength 930 nm
Average Power 10 mW
Axil Scan rate 50, 100, 200 and 248 kHz
Imaging Depth 2.9 mm

Scanning Lens Key Specifications

Effective Focal Length 110 mm
Maximum Scannable Area 28.9 × 28.9 mm2

2.2 Acquisition Process

– A finger was placed on each substrate to leave a fingerprint impression. The
OCT system would start acquiring a print impression left on the substrates.

– The OCT machine produces a 3D volume data per fingerprint. The 3D data
must then be project into a 2D fingerprint image

3 Wavelet Transform

If an image convolves with low pass and high pass filter in the vertical and
horizontal direction, four sub-images of the original image are formed [16]. The
sub-image encompasses the full image, but at different resolutions and contain-
ing different components of the original image. This includes a sub-image of low
frequency in both the horizontal and vertical direction (LL), sub-image with
low horizontal frequency but high vertical frequency (LH), sub-image with high
horizontal frequency but low vertical frequency (HL) and (HH) which has high
frequency in both horizontal and vertical directions. Fig. 1 shows the decompo-
sition skeleton of the image up to level 2, where LL is the approximation image,
HL, LH and HH represent image details in the horizontal, vertical and diago-
nal direction respectively, the subscript represents the decomposition level. The
discrete wavelet transform (DWT) and stationary wavelet transform (SWT) are
well known transforms that are used to transform or to split the image in to four
components (LL, HL, LH and HH) [16, 17].

3.1 Soft and Hard Thresholding

Image thresholding is the technique used to partition an image into background
and foreground [6]. It is simple and mostly used where ever two regions need to
be separated or distinguished. In wavelet transform, thresholding is done on one
wavelet coefficient at a time [6]. Each coefficient is compared to the threshold
value depending on thresholding rules, which are hard and soft thresholding.
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Fig. 1: Image wavelet decomposition.

All coefficients in hard thresholding are either zero or greater or equal to the
threshold value, as shown in (1) [1].

f(x)h =

{
x, if |x| ≥ T
0, if |x| < T

, (1)

where, T , is the threshold value, for soft thresholding, wavelets coefficients are
reduced to a threshold value as shown in equation (2) [1, 14].

f(x)s =


x− T, if |x| > T

0, if |x| ≤ T
x+ T, if |x| > −T

(2)

4 Wavelets Denoising Techniques

The following wavelets denoising techniques have been implemented on MAT-
LAB for fingerprint images captured using the OCT system. Haar, db2, db4,
sym4 wavelet filters have been used for these techniques and the decomposition
level 1, 2, 3 and 4 were chosen. Fig. 2 shows the wavelet transform based denoising
procedure used in this work. In this work adaptive histogram equalization was
used as the pre-processing technique. The SNR is used for quantitative analysis
of the techniques (VisuShrink, BayesShrink, SUREShrink, NormalShrink, mod-
ified universal threshold and adaptive threshold Shrink) implemented in this
work. The SNR is the measure used in science and engineering to compare the
level of desired signal to the level of background, it is defined as follows:
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SNR =

∑M−1
x=0

∑N−1
y=0 F (x, y)2∑M−1

x=0

∑N−1
y=0 [G(x, y)2 − F (x, y)2]

, (3)

where F (x, y) is the denoised image and G(x, y) is the corrupted image.

Fig. 2: The basic structure of wavelet transform based image denoising

4.1 VisuShrink

VisuShrink also known as universal threshold is the thresholding technique which
does not minimize the mean square error but picks an optimal threshold near
by [?,?]. Universal threshold is computed from diagonal subband HH1 as,

σ =
median|HH1|

0.6745
. (4)

The actual threshold value is calculated as:

T = σ
√

2logM, (5)

where M is the number of pixels in an image. However, universal threshold is
less effective in removing multiplicative noise such as speckle noise.

4.2 BayesShrink

BayesShrink is a subband dependent threshold. This means that at each subband
(i.e. HL1, LH1 and HH1) and decomposition level threshold value is computed
and thresholding is done [10, 7]. The Bayes threshold is computed using (6):
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T =
σ2

σs
, (6)

where σ2 is noise variance given by (4) and σs is the variance of noise free
image. Since the noise and the signal are mutually independent, their variance
is modelled as:

σy = σs + σ (7)

where σy is computed as,

σ2
y =

1

M2

M∑
i=1

M∑
j=1

I(i, j)2, (8)

where M is the number of pixels in image I. Then σs on (6) is computed as

σs =
√

(max(σ2
y − σ2), 0) (9)

4.3 SureShrink

SureShrink applies thresholding by applying a subband adaptive threshold. An
optimal threshold is computed separately for each detail sub-band based upon
Stein’s Unbiased Risk Estimator (SURE) [14, 15]. The optimal threshold on level
k with soft thresholding is defined as:

tsk = argmintSURE(t;x) (10)

where tsk is estimated from decomposition coefficients and x is the set of noisy
wavelet coefficients in a subband.

4.4 NormalShrink

NormalShrink technique is a wavelet domain denoising method based on the gen-
eralized Gaussian distribution(GGD) subband coefficients modelling [10]. The
threshold value of NormalShrink is defined as

T = β
σ2

σy
, (11)

where σ2 is noise variance given by (4). The σy is the standard deviation
of the noisy signal which is computed using (8). The β constant is the scale
parameter which is computed as

β =

√
log

(
Lk
J

)
, (12)

where Lk is the length of the sub-band and J is the total number of de-
composition levels. The normalShrink technique outperforms both Bayes and
visuShrink noise removal methods, it preserves edges efficiently [8].
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4.5 Modified Universal Threshold

The difference between Modified universal threshold and universal threshold is
that instead of 2 a Golden ratio value (1.618) is used, then the threshold is
computed as:

T = σ
√

(1.618)logM (13)

4.6 Adaptive Threshold

The adaptive threshold proposed in [16] is similar to BayesShrink by setting dif-
ferent threshold for every subband. The difference is the threshold computation,
BayesShrink is shown in subsection B, while the adaptive threshold is given as,

T =


σ2
WΦ

(i)

σWF (D,i) if σWF
(D, i) 6= 0

max(Wx,y(D, i)) if σWF
(D, i) = 0

, (14)

where i = 1, 2, ..., k represents wavelet decomposition layers. D = 1, 2, 3 and it
represents horizontal, vertical and diagonal details respectively. The standard
deviation of the noisy image is defined as:

σWF
(D, i) =

√
max(σ2

WG
(D, i)− σ2

WΦ
(i), 0) (15)

The standard deviation , σWΦ
, of noise signal is estimated using the median

estimator is computed as:

σWΦ
=
median(|HHi|)

0.6745
, (16)

and the image signal noise variance is given by:

σ2
WG

(D, i) =
1

N(i)2

N(i)∑
x=1

N(i)∑
y=1

WG(D, i), (17)

where N(i) is the number of pixels at different sub-images and WG(D, i)
represent wavelet coefficients at different details and decomposition levels.

5 Experimental Results

The techniques discussed on section 4 were implement on MATLAB and the
images in Fig. 3, shows the experimental results of this techniques. Table 2 to 5
shows the quantitative performance of these denoising techniques as SNR.
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Table 2: Shows the SNR value for each technique with a certain wavelet filter at
decomposition level 1.

haar db2 db4 sym4

VisuShrink 45.3085 46.1545 48.4594 47.8388
BayesShrink 46.1707 46.1549 46.1566 46.1979
Minimax 46.1908 46.1458 45.6900 47.4162
SureShrink 46.1952 46.1260 45.8923 46.1428
NormalShrink 38.2592 44.7893 48.7715 47.6175
Modified VisuShrink 41.0928 47.3135 36.7069 42.5330
Adaptive Threshold 40.9145 48.6533 42.8866 41.4479

Table 3: Shows the SNR value for each technique with a certain wavelet filter at
decomposition level 2.

haar db2 db4 sym4

VisuShrink 46.1795 46.1418 38.8561 47.6953
BayesShrink 46.1599 46.1554 42.3661 44.9396
Minimax 50.5541 46.1557 44.6618 47.1494
SureShrink 46.0642 46.1556 45.8930 46.2126
NormalShrink 36.8723 39.2311 48.3460 47.0376
Modified VisuShrink 41.0933 46.6277 42.6166 42.4867
Adaptive Threshold 40.9145 48.6533 42.8866 41.4479

6 Discussion

The OCT system has successfully acquired latent fingerprints from glass, stain-
less steel and brass (door knob). Fig. 3a shows the latent fingerprint image
acquired from the stainless steel and Fig. 3b to Fig. 3h shows the images of the
denoised version of original image using different denoising discussed in previous
sections. Table 2, 3, 4 and 5 shows SNR results at different levels with different
wavelet filters of the implemented techniques.

On Table 2 where the decomposition level equals to one, the adaptive thresh-
old method combined with db2 wavelet filter outperform other denoising tech-
niques with the value of SNR = 48.6533. The minimax denoising technique at
decomposition level 2 combined with haar surpass the other denoising techniques
(on Table 3)) with a value of SNR = 50.5541, however, minimax technique does
not give good image according to the human visualization system. The normal-
Shrink on Table 4 combined with sym4 at level 3 outperforms the other denoising
techniques, the issue with normalShrink is that speckle noise is not removed ef-
fective. On Table 5 the adaptive threshold combined with db2 is optimal with
an SNR = 48.6533.

It is observed that from Table 2 to 5 the SNR value for the adaptive threshold
is constant. The constant SNR value is due to the how noise is estimated on an
image. The median estimator which is used to estimate noise becomes very small
in high levels, this suggests that the technique is effective at lower levels and that
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Table 4: Shows the SNR value for each technique with a certain wavelet filter at
decomposition level 3.

haar db2 db4 sym4

VisuShrink 46.1294 46.1580 45.3769 46.7925
BayesShrink 46.1967 46.1965 46.0154 45.9201
Minimax 46.1785 46.1999 45.7994 45.9943
SureShrink 46.1787 46.1529 45.8760 46.2129
NormalShrink 47.7042 36.5891 48.6539 41.2657
Modified VisuShrink 41.2158 46.6278 42.8355 42.4868
Adaptive Threshold 41.0589 48.6533 42.8866 41.4479

Table 5: Shows the SNR value for each technique with a certain wavelet filter at
decomposition level 4.

haar db2 db4 sym4

VisuShrink 46.1233 46.1585 44.9114 45.7159
BayesShrink 46.1766 46.2223 45.8630 46.1578
Minimax 45.8998 46.1983 45.2014 46.0012
SureShrink 45.9786 46.1559 46.1547 46.0824
NormalShrink 36.0265 34.9886 38.1440 39.6825
Modified VisuShrink 41.2164 46.6277 42.6894 42.1665
Adaptive Threshold 41.0557 48.6533 42.8866 41.4479

is the goal of many wavelet denoising techniques since high are computational
expensive and distort images most of the time.

The adaptive threshold method combined with db2 method may be further
enhanced to yield much better results. Adaptive threshold is derived from Vis-
uShrink and BayesShrink, therefore modifield universal threshold can be com-
bined with adaptive threshold since modified universal threshold is derived from
Visushrink. This combination may give better results of the modified universal
threshold according to the results on Table 2 to 5.

7 Conclusion and Future Work

The combination of adaptive threshold and db2 filter at level 2 or 4 decomposi-
tion remove speckle noise on OCT latent fingerprint images better then the other
denoising techniques in this work. In future the adaptive threshold method will
be modified to yield much better results.
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Fig. 3: (a) noisy original fingerprint image, (b) Denoised by Visushrink, (c) De-
noised by BayesShrink, (d) Denoised by Minimax, (e) Denoised by SureShrink,
(f) NormalShrink, (g) Modified VisuShrink and (h) Denoised by adaptive thresh-
old.


