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Abstract. No framework exists that can explain and predict the gen-
eralisation ability of DNNs in general circumstances. In fact, this ques-
tion has not been addressed for some of the least complicated of neural
network architectures: fully-connected feedforward networks with ReLU
activations and a limited number of hidden layers. Building on recent
work [2] that demonstrates the ability of individual nodes in a hidden
layer to draw class-specific activation distributions apart, we show how
a simplified network architecture can be analysed in terms of these ac-
tivation distributions, and more specifically, the sample distances or ac-
tivation gaps each node produces. We provide a theoretical perspective
on the utility of viewing nodes as activation gap generators, and define
the gap conditions that are guaranteed to result in perfect classification
of a set of samples. We support these conclusions with empirical results.

Keywords: Generalisation · fully-connected feedforward networks · ac-
tivation distributions · MLP.

1 Introduction

Deep Neural Networks (DNNs) have been used to achieve excellent perfor-
mance on many traditionally difficult machine learning tasks, especially high-
dimensional classification tasks such as computer vision, speech recognition and
machine translation [4]. DNNs generalise well: trained on a limited data set, they
are able to transfer this learning to unseen inputs in a demonstrably effective
way. Despite various approaches to studying this process [1, 3, 6–8, 11–14], no
framework yet exists that can explain and predict this generalisation ability of
DNNs in general circumstances.

Specifically, one of the central tenets of statistical learning theory links model
capacity (the complexity of the hypothesis space the model represents) with ex-
pected generalisation performance [15]. However, a sufficiently large DNN repre-
sents an extremely large hypothesis space, specified by hundreds of thousands of
trainable parameters. While any architecture that has a hypothesis space that is
sufficiently large to be able to memorise random noise is not expected to gener-
alise well, this is not the case for DNNs. In a paper that caused much controversy,
Zhang et al. [17] demonstrated how both Convolutional Neural Networks (CNNs)
and standard Multilayer Perceptrons (MLPs) are able to memorise noise per-
fectly, while extracting the signal buried within the noise with the same efficiency
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as if the noise was not present. Even more pointedly, this was shown to occur
with or without adding regularisation [17].

In this work we take a step back, and analyse the classification ability of a
simplified neural network architecture, since even for a minimal network (as soon
as it has multiple layers and non-linear activation functions) generalisation be-
haviour has not been fully characterised. In recent work [2], we showed how the
individual nodes of a standard fully-connected feedforward network can draw
class-specific activation distributions apart, to the extent that these distribu-
tions can be used to train individual likelihood estimators and produce accurate
classifications at each layer of the network. Here we show that the ability of a
fully-connected feedforward network to generalise can be analysed in terms of
these activation distributions, and more specifically the distances or ‘activation
gaps’ each node produces: the difference in activation value of any two samples
at a node.

The main contribution of this paper is the development of a conceptual tool
that can be used to probe the generalisation ability of a DNN, and the empiri-
cal confirmation of the soundness of the approach when applied to a simplified
MLP architecture. We start by reviewing the concept of node-specific sample
sets and nodes as likelihood estimators (Section 2) before introducing activation
gaps (Section 3) and exploring the role of activation gaps in achieving perfect
classification from a theoretical perspective. Expected relationships are empiri-
cally confirmed in Section 4, and possible applications of these ideas as well as
future work discussed in Section 5.

2 Nodes as network elements

While a network functions as a single construct, each layer also acts as a func-
tional element, and within a layer, each node has both a local and global function.
Nodes are locally attuned to extracting information from a very specific part of
the input space, while collaborating globally to solve the overall classification
or regression task [2]. In this section we review the local nature of nodes: their
role as individual likelihood estimators, their relationship with the samples that
activate them (their ‘sample sets’), and the node-specific interaction between
sample sets and the weights that feed into a specific node.

From this point onwards, we restrict our discussion to fully-connected feed-
forward architectures with ReLU activations and unrestricted breadth (number
of nodes in a hidden layer) and depth (number of hidden layers), applied to a
classification task.

2.1 Nodes as estimators

The network behaviour for an architecture as described above was analysed
in [2]. Generalisation ability was interpreted as arising from two collaborative
information processing systems, one continuous and one discrete. Specifically, it
was shown how the network both represents a discrete system that only utilises
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information with regard to whether a node is active or not, and a continuous
system that utilises the actual pre-activation value at each node. In both systems,
each node implicitly represents the likelihood of an observation of each class: in
the discrete case, this likelihood can be estimated by counting the number of
times a node activates for a given class; in the continuous case, by fitting a
density estimator to the pre-activation distribution of each class. In both cases,
the posterior probability (given the observation) can be calculated using Bayes
rule, and the probabilities multiplied across all nodes of any layer to produce a
layer-specific class prediction for each sample.

An example of this is depicted in Figure 1, where an MLP trained and tested
on FMNIST [16] is analysed at each layer, in the manner described above. During
classification, each discrete system only uses information with regard to whether
a node is activated or not; each continuous system only uses pre-activation val-
ues; and the combined system uses the true information available to the ReLU-
activated network (either the continuous or discrete estimate). For this network,
as for all other networks of sufficient size analysed, it was observed that at some
layer, the network is able to achieve similar classification accuracy as the actual
network, irrespective of the system used to perform classification [2].

Fig. 1: Comparing continuous, discrete and combined system accuracy at each
layer for a depth 6 width 100 network trained and tested on FMNIST. The red
dotted line indicates network performance if trained and tested in the normal
manner. Reproduced from [2].

This is quite surprising. In both systems, each node therefore uses locally
available information to develop its own probability estimate in isolation, but
then collaborates with other nodes to solve the classification task. Using this
perspective, the set of samples that activates any node (its sample set) becomes
very significant. During gradient descent, the forward process applies weights
to create sample sets; the backward process uses sample sets to update weights:
each weight attuned to only its specific sample set. Sample sets can be very large
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(consisting of almost all samples) to very specialised, describing a few isolated
samples.

2.2 Node-supported cost

The interplay between sample sets and weight updates was further investigated
in [2]: rewriting the weight update ∆ws

i,j,k associated with a single sample s at
layer i from node k to node j in an iterative form, produces a surprisingly simple
structure. Specifically, noting that

Relu(x) = xT (x) (1)

where T (x) =

{
1 if x > 0

0 if x ≤ 0
(2)

and with η the (potentially adaptive) learning rate, ai−1,k the activation result
at layer i − 1 for node k, λsm the cost function at output node m, zi,j the sum
of the input to node j in layer i, and I(i, j) an indexing function (see [2]), the
weight update associated with a single sample can be written as:

∆ws
i,j,k = −η ai−1,k

Bi−1∑
b=0

λsI(N,b)

N−1∏
g=i

T (zg,I(g,b))

N∏
r=i+1

wr,I(r,b),I(r−1,b) (3)

with Bi a product of the the number of nodes in all layers following after layer
i. If we now define the sample-specific node-supported cost at layer i, node j as:

φsi,j =

Bi−1∑
b=0

λsI(N,b)

N−1∏
g=i

T (zsg,I(g,b))

N∏
r=i+1

wr,I(r,b),I(r−1,b) (4)

then the weight update by a single sample can be written as

δws
i,j,k = −ηasi−1,j,kφsi,j (5)

and over all samples (in the mini batch) used when computing the update:

δwi,j,k = −η
∑

s∈{.}i,j

asi−1,j,kφ
s
i,j (6)

This sum can either be calculated over {.}i,j , or over {.}i,j ∩ {.}i−1,k as only
samples that are active at node k will contribute to the sum, either way.

The node-supported cost is a scalar value that represents the portion of the
final cost that can be attributed to all active paths initiated from this node,
when processing sample s. Note that φsa does not differentiate between a node
that creates paths with large positive and negative costs that balance out, and
one that produces a cost close to zero. Also, a positive cost implies too much
activation, a negative cost, too little.
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2.3 Weights as directions

From the above discussion, each node vector is updated in response to the errors
remaining in its sample set. For some samples, activation values would be too
high, for others too low. Per node, the process of updating the node vector can
be viewed as one of finding a direction in its input space (the output of the
previous layer), such that samples producing different errors are separated when
calculating the projection of the sample onto the weight.

With sample sets in mind, training can then be viewed as a process of find-
ing important directions in the layer-specific input space, projecting the original
features in each of these directions to create a transformed input space, and
repeating the process layer for layer. Important directions are those useful for
classification: class-distinctive in the initial layers, class-specific in the later lay-
ers. It is important to note that this optimisation process is both local and
global: the direction of this node vector is optimised specifically for the sample
set concerned, and only the sample set concerned, resulting in a local process,
but the errors used to guide the process (the node-supported cost) is calculated
globally.

3 Gaps and ratios

In order to develop a theoretical perspective on the interplay between the weight
vectors, node-supported cost and sample sets, we constrain our initial analysis to
a much restricted architecture. This allows us to determine the exact theoretical
conditions for perfect classification of a set of samples.

3.1 A simplified architecture

While an MLP is typically viewed as an input and output layer flanking any
number of hidden layers, each hidden layer can also be seen as a small 3-layer

Fig. 2: In the simplified architecture, it is only the summary layer that is re-
stricted to two nodes; all other layers are allowed an unlimited number of nodes.
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subnetwork in its own right: utilising the output from the prior layer as input,
and trying to address the loss (the node-supported cost of Section 2.2) passed
along from its immediate output layer, the next hidden layer. As a starting
point for our analysis, we therefore restrict ourselves to the setup of such a 3-
layer subnetwork: considering only a single functional hidden layer in addition
to an input and output layer. The term ‘functional’ is used to emphasise that
only in this single hidden layer are nodes trained (in the standard manner) to
act as generalising elements.

An additional hidden layer is added between the functional hidden layer and
the output as a summarising element: this layer contains only two nodes, in
order to summarise the activations produced by the functional hidden layer for
analysis purposes. Note that if there was a single node in the summary layer,
classification would not have been possible, but with only two nodes, it is possible
to distinguish among an unlimited number of classes. Also see Figure 2.

3.2 Theoretical requirements for perfect classification

Consider a network that only has two nodes in its last hidden layer. At least
two nodes are required to be able to differentiate among classes, but two nodes
are sufficient to differentiate among an unlimited number of classes. Consider
two samples cs and c′t from two different classes c and c′, respectively. Limit the
nodes in the last hidden layer to j and k, let ajcs be the activation value of the
cs sample from the jth node and wjc the weight from node j to the output node
associated with class c.

We can now define two useful values: the activation gap α is defined as the
difference between activation values at a node:

αjcc′ = ajcs − ajc′t
αkcc′ = akcs − akc′t (7)

We therefore use αjcc′ as a shorthand for αjcsc′t , remembering that all α values
are specific to a sample pair, and not a single value per class. The weight gap
φ is defined as the difference between weight values anchored at the same node,
and terminating in the outer layer:

φjcc′ = wjc − wjc′

φkcc′ = wkc − wkc′ (8)

The weight gaps are not sample-specific, and truly has a single value for each
node and pair of classes. These definitions are illustrated in Figure 3.

For any two samples from any two different classes c and c′ to be classified
correctly, the following must hold:

ajcwjc + akcwkc > ajcwjc′ + akcwkc′ (9)

ajc′wjc′ + akc′wkc′ > ajc′wjc + akc′wkc (10)

ajcwjc + akcwkc > 0 (11)

ajc′wjc′ + akc′wkc′ > 0 (12)
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Fig. 3: Calculating the activation and weight gaps.

These equations can be combined:

ajcwjc + akcwkc > ajcwjc′ + akcwkc′

−ajc′wjc − akc′wkc > −ajc′wjc′ − akc′wkc′

=⇒ ajcwjc + akcwkc − ajc′wjc − akc′wkc > ajcwjc′ + akcwkc′ − ajc′wjc′ − akc′wkc′

=⇒ αjcc′wjc + αkcc′wkc > αjcc′wjc′ + αkcc′wkc′

=⇒ αjcc′wjc − αjcc′wjc′ > αkcc′wkc′ − αkcc′wkc

=⇒ αjcc′φjcc′ > αkcc′φkc′c (13)

This does not mean that there is any asymmetry to the roles of j and k. The
ratio can be rewritten in different ways, as the following are all equivalent:

αjcc′φjcc′ > αkcc′φkc′c

αjcc′φjcc′ > −αkcc′φkcc′

αkcc′φkcc′ > αjcc′φjc′c

Using the definition of Equation 8 in Equations 9 and 10, it follows that

ajcφjcc′ + akcφkcc′ > 0

ajc′φjcc′ + akc′φkcc′ < 0 (14)

which means that, since the activation values ≥ 0, one of φjcc′ or φkcc′ must
always be negative, and the other positive; which is similar to requiring that
φjcc′ or φkc′c must be positive (since φkcc′ = −φkc′c). Combining this information
with Eq. 13 it will always hold that for correctly classified samples, that:

φjcc′φkc′c > 0 (15)

αjcc′φjcc′ > αkcc′φkc′c (16)
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Following the reverse process (not shown here), Equations 15 and 16 then become
the requirements for correct classification. Taking signs into account, Equation
16 can be restated as a ratio, with the required inequality depending on the signs
of the separate elements. Correct classification then requires that in addition to
Equation 15 either

αjcc′αkcc′ < 0 (17)

or, if αjcc′αkcc′ > 0, then:

|αjcc′ |
|αkcc′ |


>
φkc′c
φjcc′

if φjcc′αkcc′ > 0

<
φkc′c
φjcc′

if φjcc′αkcc′ < 0
(18)

which needs to hold for all samples of all classes classified correctly, for every
single c and c′ pair. We define the activation ratio (α-ratio) as the term on the
left, and the weight ratio (φ-ratio) as the term on the right.

Note that the weight ratio will always be positive, and is fixed for all samples,
once the network has been trained. Since these values are set in the output layer,
the role of the nodes up to the last hidden layer is to create activation gaps
between samples, consistent with the established weight ratios. Since each gap
is created simply by summing over all active nodes in the previous layer, nodes
that are able to separate classes well are re-used, and their ability to separate
classes, can be analysed by analysing the α values.

3.3 Network normalisation

Fig. 4: If all in-fan weights at a node (red) are divided with the same value
used to multiply all out-fan weights (green) with, network behaviour remains
unchanged, but per-layer analysis would produce very different results.
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After training and prior to any analysis, the network is normalised to re-
move potential cross-layer artefacts. Figure 4 demonstrates how it is possible
to introduce artefacts that would invalidate any layer-specific analysis, without
changing overall network behaviour. We therefore perform weight normalisation
one layer at a time; normalising the in-fan weight vector per node, and passing
this norm along to the out-fan weight vector of the same node at the next layer.
Specifically, we calculate the node-specific norm of the in-fan weight vector at
that node; and use this value to both divide the in-fan weight vector with, and
multiply the out-fan weight vector with. This has the added benefit that all
weights now have a norm of 1, which means that the activation values at any
node are actually simply the projections of all the sample values onto the weight
vector.

4 Empirical confirmation

In order to demonstrate the concept of generation gaps, we train ReLU-activated
networks with the architecture of Figure 2 using the MNIST [10] dataset. We use
a fairly standard training setup: initialising weights and biases with He initial-
isation [5]; optimising the Cross-Entropy loss with Adam as optimiser [9]; and
performing a grid search of learning rates across different training seeds. No ad-
ditional regularisation apart from early stopping is used. All hyper-parameters
are optimised on a 5,000 sample validation set. We use the same protocol to
train networks with hidden layers of 100, 300 and 600 hidden nodes, and select
the sample networks listed in Table 1 for analysis. Results across the three archi-
tectures are very similar (and per architecture, identical before and after weight
normalisation).

model training accuracy test accuracy

600-node 0.965 0.937
300-node 0.984 0.933
100-node 0.969 0.936

Table 1: Training and test accuracy of models with different number of hidden
nodes. All models include a 2-node summary layer.

We confirm that the expected ratios hold in practice, by analysing the weight
and gap ratios for correctly classified samples. We find that these ratios do indeed
hold, as illustrated in Figures 5 to 7. Ratios were confirmed for all samples and
networks, but in these figures we extract the weight and activation gaps for 300
random samples correctly classified by the 300-node model.
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(a) unnormalised (b) normalised

Fig. 5: As anticipated from Equation 15, the value of φjcc′φkc′c is always positive
(black line) even though the individual weights can be positive or negative.
Weight gaps are shown both before (left) and after weight normalisation (right).

Fig. 6: For correctly classified samples, it always holds that the αjcc′φjcc′ val-
ues (blue) are larger than the matching αkcc′φkc′c (orange), as expected from
Equation 13. Weight-normalised values shown here.

5 Conclusion

We build on results from [2] which views DNNs as layers of collaborating classi-
fiers, and probe the interplay between the local and global nature of nodes in a
hidden layer of an MLP. We ask what the theoretical conditions are for perfect
classification of a set of samples from different classes, and answer this question
for a simplified architecture.

While the architecture is simplified, it is not trivial: a summary layer can be
added to a pre-trained MLP, which makes the 2-node summary layer less of a
restriction than it initially seems. Also, MLPs with multiple hidden layers can
be considered as consisting of multiple 3-layer sub-networks stacked on top of
each other; it is not immediately clear to what extent the same factors that are
important for a 3-layer MLP are important for a sub-network within a larger
structure. Recurrence and residual connections are problematic for theoretical
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Fig. 7: Weight ratios (green) plotted with matching activation ratios under the
two conditions specified by Equation 18. The activation ratio is larger when
αjcc′αkcc′ > 0 (blue) and smaller when φjcc′αkcc′ < 0 (orange). All values after
weight normalisation; both axes limited to show detail.

analysis, but convolutional layers can to a large extent be analysed as sparse,
connected-weight MLPs. All in all, while it should be possible to extend the ideas
of this paper to more complex architectures, our first goal is to fully understand
the generalisation ability of straightforward ReLU-activated MLPs,

For a simplified MLP, we have shown how activation gaps are formed at node-
level, and how the consistency of these gaps gives rise to the classification ability
of a layer. Specifically, nodes act as ‘gap generators’ between samples. These
gaps are re-used across multiple samples and their manner of use sheds light on
the characteristics of nodes that we expect to better support generalisation. In
this paper, we do not yet use either the gaps or the ratios to probe the networks
themselves: How are gaps distributed across nodes? How are nodes (and the gaps
they create) re-used? From the interaction between sample sets and gaps, are
some nodes more general and others more specific? What does this say about
the generalisation ability of the network? While we have not answered any of
these questions, we have developed a conceptual tool that can be used to probe
networks for answers to questions such as these.
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A Ratios for unnormalised networks

Figures 6 and 7 were produced after weight normalisation. Here we include the
pre-normalisation results: patterns are similar, while scale is different.

Fig. 8: The same analysis as in Figure 6 but repeated before weight normalisation.

(a) unnormalised (b) normalised

Fig. 9: A more complete version of Figure 7, before and after weight normalisa-
tion. Note that the α-ratios tend to be very small, when compared with with
the more evenly distributed φ-ratios.


