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Abstract. Generative design aims to autonomously produce several design al-

ternatives given a set of design specifications. The focus of this research is con-

ceptual design generation in generative design as this is the most flexible and 

critical phase of the process. We propose a framework to generate 3D images of 

conceptual designs for products by using a method for learning visual con-

straints to regulate the training of Deep Generative Models. In doing so the 

Deep Generative Models should produce diverse conceptual designs while en-

suring the functionality and viability of the generated designs. An overview of 

recent research that uses Deep Generative Models such as Variational Autoen-

coders and Generative Adversarial Networks for generative design is provided. 

A method for learning visual constraints by using learnable constraints is dis-

cussed as well as techniques for evaluating the validity and novelty of the de-

signs. 
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1 Introduction 

1.1 Background  

The design process is complex as architects, engineers and designers must consider 

factors such as aesthetics, productivity, budget and time when developing a design. 

This has resulted in the conventional product design process typically producing a 

single detailed model as a solution. Generative design seeks to autonomously generate 

several design alternatives given constraints and design criteria [1]. Currently in in-

dustry generative design is performed by integrating genetic algorithms and topology 

optimization (a method to minimize mass and maintain structural integrity) to create 

design variations in 2D and 3D models [2]. Recently the use of Deep Generative 

Models in generative design has been explored as these models have the potential to 

provide more diverse and aesthetic designs [3]. A deep generative model is an algo-

rithm for constructing a generator that learns the probability distribution of training 

data and generates new data based on the learned probability distribution [4]. 

  The conceptual design stage is usually the second stage of the design process and  

is considered a crucial stage of the process. It is non-routine and creative in its nature 

when compared to the other design stages which are more methodical (e.g. calcula-
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tions and structural analysis).  Creative design is based on reflection, reaction, critique 

and inspiration being drawn from the process itself [5]. This implies the conceptual 

design stage is an iterative process thus making it time consuming. Developing the 

concepts requires knowledge and experience to apply constraints to conceptual de-

signs. If constraints are applied incorrectly then the entire design process is under-

mined due to human error. The addition of constraints (e.g. predefining the objects 

geometry and overall size) before conceptual designs are generated restricts the diver-

sity of designs produced. This may be avoided by enabling Deep Generative Models 

to learn knowledge constraints and visual concepts. The functionality of the 3D con-

ceptual designs can be achieved by maintaining integral design features by utilizing 

the concept of learning visual constraints. The aforementioned highlights the potential 

of allowing Deep Generative models to learn visual constraints in order to generate 

functional and aesthetic 3D conceptual designs. 

1.2 Problem Definition  

The aim of the paper is to learn visual constraints for constraining Deep Generative 

Models in order to generate 3D conceptual designs which are diverse, functional and 

practical; resulting in the minimization of human intervention in the pre-processing 

phase of the design process. Deep Generative Models are the latest technique used in 

generative design research. Deep Generative Models have been coupled with tech-

niques such as topology optimization to generate designs. The use of Deep Generative 

Models solely for design generation has a tendency to reproduce invalid designs ac-

cording to recent research [3]. In this paper visual constraints refers to restrictions and 

rules which allow for a product to have its main features to be appropriately posi-

tioned thus ensuring that the product can perform its given function. An example of 

such a constraint is learnable knowledge constraints which were used to generate 

human images. The image of a target pose was generated by a generative model by 

learning constraints from front view images of a person [6]. Constraining of Deep 

Generative Models refers to the regulation of its training to produce a set of desirable 

outcomes. The focus of this paper is on conceptual design generation. Conceptual 

designs embody fundamental ideas of a design which can be visual represented in 

several forms (e.g. sketches). Conceptual design generation is the focus as it can be 

the most time consuming phase of the design process [2]. 3D conceptual design refers 

to an image of 3D product designs. This research will assess which Deep Generative 

Model (mainly variations of Generative Adversarial Networks and Variational Au-

toendcoder) can accurately generate 3D images. This research will also assess which 

method of learning visual constraints can be used to generate conceptual designs. 

2 Literature review 

2.1 Generative Design  

The design process is an iterative process consisting of problem definition, conceptual 

design stage and detailed design stage. The process has incomplete problem specifica-
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tions. The conceptual design stage is a creative design process which presents con-

cepts and generalized forms.  Creative design is based on reflection, reaction, critique 

and inspiration being drawn from the process itself, which is referred to as conceptual 

emergence [5]. Experience and understanding is required to develop solutions to de-

sign problems. The design and problem space contains a set of feasible designs which 

are created to solve a particular design problem. The design space has states with each 

state representing a conceptual design. The states can be defined by multiple charac-

teristics (e.g. performance, size, weight). 

Generative design is usually a capability of CAD (Computer Aided Drawing) ap-

plications that autonomously generate a number of design alternatives given a set 

number of constraints [2]. Engineers or designers can choose which designs they want 

to explore further. Generative Design utilizes capabilities such as Topology Optimiza-

tion and Genetic algorithms to explore the design space of a new product. In the engi-

neering domain the typical generative design process begins with an input which is a 

2D or 3D model, either a Concept Design or Detailed Design. The engineer/designer 

specifies the constraints such as geometric constraints (e.g. maintaining a certain ge-

ometric shape at a specific relative position) [2]. 

In the conceptual design phase a range of ideas are developed which satisfy the 

form, fit, and function requirements. Generative Design is highly applicable to con-

ceptual design as this phase allows for flexibility to explore alternative ideas for prod-

ucts [2]. The concept designs can be represented as 2D sketches, abstract 3D models, 

or fully detailed designs. 

Table 1 shows a list of commercial application of generative design. Genetic algo-

rithms are currently used in industry to perform topology optimization.  

 

Table 1. Commercial applications of generative design to date 

Domain Product Technique 

Aerospace  Bionic partition for airplane Genetic algorithms ;slime mold and 

mammal bones [7]                                 

Furniture  Chair  Genetic algorithms [8] 

Architecture  Office space planning Multi- objective genetic algorithm 

[9] 

Automotive  Seat bracket for seat belt Genetic algorithms[10]  

   

 

 

Recently there have been several papers that explored the use of neural networks in 

generative design frameworks [4],[11],[12],[3],[13]. Deep Generative Models and 

Topology Optimization were used in a framework to produce 2D black and white 

wheels designs [4].  

There is a lack of large reliable databases of images or models of products that are 

required for training neural networks [4]. A method to generate training data was 

proposed by using a topology optimization algorithm which has a multi-objective 
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function. The framework consisted of multiple stages. A BEGAN (Auto-encoder used 

for the discriminator) was used to generate the 2D wheel designs and topology opti-

mization followed. BEGAN was selected as it produced simpler and sharper images 

fast and stably. Mode collapse of BEGAN was addressed by using topology optimiza-

tion and manual methods and human intervention. Although the BEGAN was select-

ed, the DCGAN was tested in the framework as well and generated more varied and 

complex shapes. However the reference designs generated by BEGAN were simpler 

and sharper and yielded better topology designs than DCGAN. The choice of GAN 

was based on the specific framework that was developed which was centered on to-

pology optimization.  The use of 2D design space and pixel wise designs is seen as 

undesirable in the field of design as it is an over simplification of a problem hence 

making it unrealistic. 

 A novel topology design approach using an integrated Deep Learning Network 

architecture was developed to generate 2D beam designs [11]. A topology optimiza-

tion algorithm was used to generate training data in a similar manner as [4]. Wasser-

stein GAN was used to generate the 2D beam designs. According to [11] mode col-

lapse of WGAN was identified as a concern but this is in contrast to [14]. Unlike oth-

er GAN variations which experience mode collapse, WGAN is able to eliminate mode 

collapse [14]. A sample of the initial dataset generated by using the topology optimi-

zation algorithm is not provided. Evaluation of the novelty of the 2D designs are not 

considered since the main focus of the results were on the quality of image generated 

by the WGAN. Thus the extent of variation in the designs generated cannot be as-

sessed.  

 An indirect design representation for topology optimization using Variational Au-

to-encoder (VAE) was used by [12] in order to produce 2D heat conduction images 

(black and white). Training data was generated similarly to [4] and [11]. Multi-layer 

perceptron networks were used for the encoder and decoder of the VAE [12]. The 

VAE was augmented by the addition of a style loss function for the purpose of style 

transfer. The VAE augmentation prevents unrealistic scattering of material clusters 

thus forcing it to follow the topological style from the training images. The VAE 

augmentation with regards to style indicates the necessity to constrain deep generative 

models in order to produce more realistic results for certain applications (i.e. in sci-

ences and engineering). The VAE tends to produce blurry images, and not all image 

details are preserved in the reconstructed or generated images due to the choice of the 

VAE loss function. More details can be preserved by using modified VAEs such as 

ones based on adversarial training. 

 In [3], the use of two deep generative models in generative product design frame-

works is explored. VAE with a deep convolutional architecture) and WGAN were 

used to generate 2D window designs. The VAE approach produces diverse designs 

with respect to shape, color and style. The WGAN produced designs with window 

features (mullions and frames) in suitable positions and more asymmetric designs; 

indicating that unconventional designs were produced by the WGAN. The aim of the 

2D window experiments was to create distinctive designs. The problem of the 2D 

window designs is not as complex as the 2D wheel, beam and heat conduction prob-

lems.  Hence the 2D window experiment cannot confirm whether WGAN can solely 
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produce viable and practical designs for more complex problems. All the window 

designs were blurry. The training of the WGAN and VAE were not progressive and 

the WGAN was not trained long enough for it to converge which would affected the 

generated images [3]. The method of evaluating the models was done by visual in-

spection.  

 In [13] the focus was on generating 3D (voxel format) beam models using 3D 

Convolutional Neural Networks (CNNs) in order to reduce overall computational 

time.  A 3D CNN was trained on intermediate results from a conventional topology 

optimization process produced by the program called TopOpt. The topology optimiza-

tion program at an intermediate stage is stopped and the current structure is fed to 3D 

CNN which predicts the final optimized structure. Due to the use of the 3D format the 

3D CNN was able to learn the density distribution of the beams in relation to the de-

sign criteria for the beam problem.  The use of 3D CNN resulted in 40% reduction in 

overall computational time while achieving structural accuracies of 96% when com-

pared to the ground truth (3D models generated by TopOpt). The novelty of the de-

signs was not an objective. An objective of the 3D beam model experiment is struc-

tural performance of the design The experiment shows that the 3D CNN is able to 

predict final designs in this context. A beam is a simple problem compared to other 

design problems; the approach to the problem is systematic. Based on the 3D beam 

experiments, CNNs solely cannot be considered when aiming for innovative designs.     

 The decision of generating training data using topology optimisation for some of 

the aforementioned papers was based on its ability to produce results which are relia-

ble and structurally feasible. The above approaches rely on topology optimization to 

ensure the designs produced are viable but this approach requires the imposition of 

constraints (e.g. dimensions are specified as exact values or ranges) before the design 

process begins. This may inhibit the diversity of designs generated. GANs are capable 

of producing unconventional designs [3], [4] but experience difficulty when attempt-

ing to produce valid (functional) designs for more complex problems. Creation of 

diversity in the generated designs is a concern.  

2.2 Evaluation 

The focus of the research is on generating conceptual designs therefore the metrics to 

be evaluated are validity and novelty (variation) of designs and number of valid de-

signs. Novelty of designs is typically performed by comparing generated designs to 

reference designs (ground truth). Validity of designs will be based on identification of 

crucial physical features, relative positioning of features and product dependent char-

acteristics (e.g. width and height).  

 Development of a loss function (reconstruction error function) employing auto-

encoder trained with reference designs was used to evaluate novelty (index similarity) 

and physical quantities (e.g. volume) in [4]. Reconstruction errors of Auto-encoders 

are widely used to detect anomalies. If design data is insufficient then a regression 

model can be used instead of an auto-encoder for evaluating designs [4].  

 In [11] a CNN is used to evaluate image quality of the designs and it is trained with 

reference designs. 
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 In [13] Root Mean Square is used as an accuracy metric to evaluate the perfor-

mance of the CNN to generate the 3D models. Root Mean Square is also used as an 

accuracy metric to evaluate the performance of the CNN for topology optimization. 

This helps in understanding the proximity of the actual density distribution values 

between the predicted and the final structure. Final processing of the structure using 

TopOpt is used as ground truth. Binary accuracy and spatial gradient of filtered densi-

ties were the metrics used to map the progress after each iteration of the CNN.   

 In [12] a multi objective genetic algorithm was used to identify non-dominated 

designs (novel designs) that are fundamentally different from the training data de-

signs. 

2.3 Learning constraints from images 

Learnable knowledge constraints. Posterior regularization (PR) provides a frame-

work for imposing knowledge constraints on probabilistic models [15].  The con-

straint term encodes the domain knowledge. It is used to regulate the learning of mod-

els in different context [15].  The application of PR is limited to a Bayesian formula-

tion or explicit density evaluation models therefore it cannot be applied to Deep Gen-

erative Models [6]. It also requires constraints to be fully specified which maybe be 

impractical as there is uncertainty in some constraints with regard to complex 

knowledge.  

 Therefore the use of Posterior Regularization to learn constraints as extrinsic re-

wards in reinforcement learning was proposed by [6].  The proposed algorithm can be 

applied to neural models with any type of architecture and thus can be applied to 

Deep Generative Models. Inverse reinforcement learning is used in the algorithm to 

learn PR constraints from data. The algorithm is efficient in regularizing large target 

space with arbitrary constraints and is flexible to learn the constraints and model 

jointly. The algorithm alternates the optimization of the constraint and the generative 

model and the constraint is regarded as a reward function to be induced.  

 Human image generation experiments were conducted using the learnable 

knowledge constraint method. The domain knowledge learnt in this experiment is the 

human anatomy (body structure). A front view image of a person and a target pose 

(defined by key points) were provided. The aim is to generate the person’s image 

within the constraints of the target pose. The constraints force the human body parts 

(e.g. hands) of the generated image to correspond to those of the true target image 

(pose). The constraint includes a human parsing module that classifies each pixel of a 

person image into possible body parts [6]. The images used in the experiment had 

body self-occlusions and cloth and shape ambiguities. The addition of a body part 

consistency constraint to the generative model showed improved results over base 

generative models.  

 The proposed approach presents a generalizable method to adding knowledge to 

neural networks by formulating knowledge constraints that prompt the model to learn 

the desired structure and outcome whereas previous approaches use domain 

knowledge (i.e. explicitly providing knowledge base) to achieve the same results. The 

experiments in the paper focused on developing constraints which did not require 
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explicit knowledge as the constraints were deduced from the images. The learnable 

knowledge constraint method learnt to classify human body parts and thereafter as-

signing it to a position for the target pose. The human anatomy was correctly posi-

tioned in the generated target poses but the color of the clothing items was incorrectly 

reproduced in some instances (e.g. the white color of a blouse was used for a pair of 

shorts).  The nature of the constraints was simple when compared to a complex prob-

lem such as those in generative design. The proposed method was able to regulate the 

training of the generative model hence achieving the desired result.  

3 Proposed method 

A method similar to the target pose input method used in [6] must be devised. This is 

necessary for allowing the user to input products specifications (requirements) to 

enable training of the framework to learn desirable outcomes. This must be integrat-

ing into the deep generative model and learning visual constraints framework. Deep 

Generative Models (GANs and VAEs variations) will be implemented in order to 

assess its accuracy with regards to generation of conceptual product designs. A range 

of products will be used for this experiment.  

 Since the aim of the research is to improve conceptual designs generation by using 

a method to learn visual constraints; a number of products must be evaluated to de-

termine that the functionality is achieved across several product domains. This will 

prove whether the proposed framework is generalizable with respect to conceptual 

design. Conceptual designs in the form of images will be produced as the output of 

the proposed framework. 

 The methods to evaluate validity of designs and novelty must be decided upon. 

Evaluation can be performed by either utilizing experts to evaluate designs or an au-

tomated process. Specific metrics for each product being generated must be decided 

upon as each product must satisfy different requirements in order to be functional. 

The use of specific metrics for each product will be used to measure the validity of 

the designs.  Finally a comparison between the novelty and variation and functionality 

and validity of the generated 3D conceptual designs by the proposed framework to a 

base Deep Generative Model must be made.  
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